Three-dimensional reconstruction of a whole insect reveals its phloem sap-sucking mechanism at nano-resolution

  1. Xin-Qiu Wang
  2. Jian-sheng Guo
  3. Dan-Ting Li
  4. Yang Yu
  5. Jaco Hagoort
  6. Bernard Moussian
  7. Chuan Xi Zhang  Is a corresponding author
  1. Zhejiang University, China
  2. Carl Zeiss (Shanghai) Co Ltd, China
  3. University of Amsterdam, Netherlands
  4. Université Côte d'Azur, CNRS, Inserm, France
  5. Ningbo University, China

Abstract

Using serial block face scanning electron microscopy (SBF-SEM), we report on the internal 3D structures of the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) at nanometer resolution for the first time. Within the reconstructed organs and tissues, we found many novel and fascinating internal structures in the planthopper such as naturally occurring three four-way rings connecting adjacent spiracles to facilitate efficient gas exchange, and fungal endosymbionts in a single huge insect cell occupying 22% of the abdomen volume to enable the insect to live on plant sap. To understand the muscle and stylet movement during phloem sap-sucking, the cephalic skeleton and muscles were reconstructed in feeding nymphs. The results revealed an unexpected contraction of the protractors of the stylets, and suggested a novel feeding model for the phloem sap-sucking.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-5.

Article and author information

Author details

  1. Xin-Qiu Wang

    Institute of Insect Science, Zhejiang University, Hangzhou, China
    Competing interests
    No competing interests declared.
  2. Jian-sheng Guo

    Center of Cryo-electron Microscopy, Zhejiang University, Hangzhou, China
    Competing interests
    No competing interests declared.
  3. Dan-Ting Li

    Institute of Insect Science, Zhejiang University, Hangzhou, China
    Competing interests
    No competing interests declared.
  4. Yang Yu

    Carl Zeiss (Shanghai) Co Ltd, Shanghai, China
    Competing interests
    Yang Yu, Yang Yu is affiliated with Carl Zeiss (Shanghai) Co., Ltd. The author has no financial interests to declare.
  5. Jaco Hagoort

    Department of Medical Biology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  6. Bernard Moussian

    Université Côte d'Azur, CNRS, Inserm, Nice, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2854-9500
  7. Chuan Xi Zhang

    Institute of Plant Virology, Ningbo University, Ningbo, China
    For correspondence
    chxzhang@zju.edu.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7784-1188

Funding

National Natural Science Foundation of China (31630057)

  • Chuan Xi Zhang

National Natural Science Foundation of China (31871954)

  • Chuan Xi Zhang

Natural Science Foundation of Zhejiang Province (LQ20C040003)

  • Jian-sheng Guo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,781
    views
  • 932
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xin-Qiu Wang
  2. Jian-sheng Guo
  3. Dan-Ting Li
  4. Yang Yu
  5. Jaco Hagoort
  6. Bernard Moussian
  7. Chuan Xi Zhang
(2021)
Three-dimensional reconstruction of a whole insect reveals its phloem sap-sucking mechanism at nano-resolution
eLife 10:e62875.
https://doi.org/10.7554/eLife.62875

Share this article

https://doi.org/10.7554/eLife.62875

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Thi Thom Mac, Teddy Fauquier ... Thierry Brue
    Research Article

    Deficient Anterior pituitary with common Variable Immune Deficiency (DAVID) syndrome results from NFKB2 heterozygous mutations, causing adrenocorticotropic hormone deficiency (ACTHD) and primary hypogammaglobulinemia. While NFKB signaling plays a crucial role in the immune system, its connection to endocrine symptoms is unclear. We established a human disease model to investigate the role of NFKB2 in pituitary development by creating pituitary organoids from CRISPR/Cas9-edited human induced pluripotent stem cells (hiPSCs). Introducing homozygous TBX19K146R/K146R missense pathogenic variant in hiPSC, an allele found in congenital isolated ACTHD, led to a strong reduction of corticotrophs number in pituitary organoids. Then, we characterized the development of organoids harboring NFKB2D865G/D865G mutations found in DAVID patients. NFKB2D865G/D865G mutation acted at different levels of development with mutant organoids displaying changes in the expression of genes involved on pituitary progenitor generation (HESX1, PITX1, LHX3), hypothalamic secreted factors (BMP4, FGF8, FGF10), epithelial-to-mesenchymal transition, lineage precursors development (TBX19, POU1F1) and corticotrophs terminal differentiation (PCSK1, POMC), and showed drastic reduction in the number of corticotrophs. Our results provide strong evidence for the direct role of NFKB2 mutations in the endocrine phenotype observed in patients leading to a new classification of a NFKB2 variant of previously unknown clinical significance as pathogenic in pituitary development.

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.