The alternative sigma factor σX mediates competence shut-off at the cell pole in Streptococcus pneumoniae

  1. Calum HG Johnston
  2. Anne-Lise Soulet
  3. Matthieu Bergé
  4. Marc Prudhomme
  5. David De Lemos
  6. Patrice Polard  Is a corresponding author
  1. CNRS, France
  2. University of Geneva, Switzerland
  3. Université Paul Sabatier, France

Abstract

Competence is a widespread bacterial differentiation program driving antibiotic resistance and virulence in many pathogens. Here, we studied the spatiotemporal localization dynamics of the key regulators that master the two intertwined and transient transcription waves defining competence in Streptococcus pneumoniae. The first wave relies on the stress-inducible phosphorelay between ComD and ComE proteins, and the second on the alternative sigma factor σX, which directs the expression of the DprA protein that turns off competence through interaction with phosphorylated ComE. We found that ComD, σX and DprA stably co-localize at one pole in competent cells, with σX physically conveying DprA next to ComD. Through this polar DprA targeting function, σX mediates the timely shut-off of the pneumococcal competence cycle, preserving cell fitness. Altogether, this study unveils an unprecedented role for a transcription σ factor in spatially coordinating the negative feedback loop of its own genetic circuit.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Calum HG Johnston

    LMGM-UMR5100, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Anne-Lise Soulet

    LMGM-UMR5100, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthieu Bergé

    Department Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0910-6114
  4. Marc Prudhomme

    LMGM-UMR5100, Université Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. David De Lemos

    LMGM-UMR5100, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Patrice Polard

    LMGM-UMR5100, CNRS, Toulouse, France
    For correspondence
    Patrice.Polard@ibcg.biotoul.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0365-4347

Funding

Agence Nationale de la Recherche (ANR-10-BLAN-1331)

  • Patrice Polard

Agence Nationale de la Recherche (ANR-13-BSV8-0022)

  • Patrice Polard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Melanie Blokesch, Ecole Polytechnique Fédérale de Lausanne, Switzerland

Version history

  1. Received: September 8, 2020
  2. Accepted: October 31, 2020
  3. Accepted Manuscript published: November 2, 2020 (version 1)
  4. Version of Record published: November 13, 2020 (version 2)

Copyright

© 2020, Johnston et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,044
    views
  • 140
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Calum HG Johnston
  2. Anne-Lise Soulet
  3. Matthieu Bergé
  4. Marc Prudhomme
  5. David De Lemos
  6. Patrice Polard
(2020)
The alternative sigma factor σX mediates competence shut-off at the cell pole in Streptococcus pneumoniae
eLife 9:e62907.
https://doi.org/10.7554/eLife.62907

Share this article

https://doi.org/10.7554/eLife.62907

Further reading

    1. Microbiology and Infectious Disease
    Moagi Tube Shaku, Peter K Um ... Bavesh D Kana
    Research Article

    Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.

    1. Microbiology and Infectious Disease
    Ryan Thiermann, Michael Sandler ... Suckjoon Jun
    Tools and Resources

    Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, ‘what you put is what you get’ (WYPIWYG) – that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.