Ribosomal profiling during prion disease uncovers progressive translational derangement in glia but not in neurons

  1. Claudia Scheckel  Is a corresponding author
  2. Marigona Imeri
  3. Petra Schwarz
  4. Adriano Aguzzi  Is a corresponding author
  1. University Hospital Zurich, Switzerland

Abstract

Prion diseases are caused by PrPSc, a self-replicating pathologically misfolded protein that exerts toxicity predominantly in the brain. The administration of PrPSc causes a robust, reproducible and specific disease manifestation. Here we have applied a combination of translating ribosome affinity purification and ribosome profiling to identify biologically relevant prion-induced changes during disease progression in a cell-type specific and genome-wide manner. Terminally diseased mice with severe neurological symptoms showed extensive alterations in astrocytes and microglia. Surprisingly, we detected only minor changes in the translational profiles of neurons. Prion-induced alterations in glia overlapped with those identified in other neurodegenerative diseases, suggesting that similar events occur in a broad spectrum of pathologies. Our results suggest that aberrant translation within glia may suffice to cause severe neurological symptoms and may even be the primary driver of prion disease.

Data availability

Sequencing data has been deposited in GEO under accession code GSE149805.

Article and author information

Author details

  1. Claudia Scheckel

    Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
    For correspondence
    claudia.scheckel@usz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1649-8486
  2. Marigona Imeri

    Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Petra Schwarz

    Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1686-8624
  4. Adriano Aguzzi

    Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
    For correspondence
    adriano.aguzzi@usz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0344-6708

Funding

H2020 Marie Skłodowska-Curie Actions (706138)

  • Claudia Scheckel

H2020 European Research Council (670958)

  • Adriano Aguzzi

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschungf (179040)

  • Adriano Aguzzi

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (183563)

  • Adriano Aguzzi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were performed in compliance with the Swiss Animal Protection Law, under the approval of the Veterinary office of the Canton Zurich (animal permits ZH040/15, ZH139/16).

Copyright

© 2020, Scheckel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,985
    views
  • 435
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claudia Scheckel
  2. Marigona Imeri
  3. Petra Schwarz
  4. Adriano Aguzzi
(2020)
Ribosomal profiling during prion disease uncovers progressive translational derangement in glia but not in neurons
eLife 9:e62911.
https://doi.org/10.7554/eLife.62911

Share this article

https://doi.org/10.7554/eLife.62911