Restored TDCA and valine levels imitate the effects of bariatric surgery

  1. Markus Quante
  2. Jasper Iske
  3. Timm Heinbokel
  4. Bhavna N Desai
  5. Hector Rodriguez Cetina Biefer
  6. Yeqi Nian
  7. Felix Krenzien
  8. Tomohisa Matsunaga
  9. Hirofumi Uehara
  10. Ryoichi Maenosono
  11. Haruhito Azuma
  12. Johann Pratschke
  13. Christine S Falk
  14. Tammy Lo
  15. Eric Sheu
  16. Ali Tavakkoli
  17. Reza Abdi
  18. David L Perkins
  19. Maria-Luisa Alegre
  20. Alexander S Banks
  21. Hao Zhou
  22. Abdallah Elkhal
  23. Stefan G Tullius  Is a corresponding author
  1. Brigham and Women's Hospital, United States
  2. Beth Israel Deaconess Medical Center, United States
  3. Charité Universitätsmedizin Berlin, Germany
  4. Osaka Medical College, Japan
  5. Hannover Medical School, Germany
  6. University of Illinois at Chicago, United States
  7. Beth Israel Deaconess Medical Center and Harvard Medical School, United States

Abstract

Background: Obesity is widespread and linked to various co-morbidities. Bariatric surgery has been identified as the only effective treatment, promoting sustained weight loss and the remission of co-morbidities.

Methods: Metabolic profiling was performed on diet induced obese (DIO) mice, lean mice and DIO mice that underwent sleeve gastrectomies. In addition, mice were subjected to i.p. injections with TDCA and valine. Indirect calorimetry was performed to assess food intake and energy expenditure. Expression of appetite regulating hormones was assessed through quantification of isolated RNA from dissected hypothalamus tissue. Subsequently, i.p. injections with an MCH antagonist and intrathecal administration of melanin-concentrating hormone were performed and weight loss was monitored.

Results: Mass-spectrometric metabolomic profiling revealed significantly reduced systemic levels of TDCA and L-valine in DIO mice. TDCA and L-Valine levels were restored after sleeve gastrectomies (SGx) in both human and mice to levels comparable with lean controls. Systemic treatment with TDCA and valine induced a profound weight loss analogous to effects observed after SGx. Utilizing indirect calorimetry, we confirmed reduced food intake as causal for TDCA/valine-mediated weight loss via a central inhibition of the melanin-concentrating hormone.

Conclusions: In summary, we identified restored TDCA/valine levels as an underlying mechanism of SGx-derived effects on weight loss. Of translational relevance, TDCA and L-valine are presented as novel agents promoting weight loss while reversing obesity-associated metabolic disorders.

Data availability

All relevant data supporting the findings of this study are available as source data files.

Article and author information

Author details

  1. Markus Quante

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jasper Iske

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Timm Heinbokel

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bhavna N Desai

    Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hector Rodriguez Cetina Biefer

    Departrment of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Yeqi Nian

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Felix Krenzien

    Department of Visceral, Abdominal and Transplantation Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Tomohisa Matsunaga

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hirofumi Uehara

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ryoichi Maenosono

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Haruhito Azuma

    Urology, Osaka Medical College, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Johann Pratschke

    Department of Visceral, Abdominal and Transplantation Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Christine S Falk

    Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Tammy Lo

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Eric Sheu

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Ali Tavakkoli

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Reza Abdi

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. David L Perkins

    Department of Medicine, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Maria-Luisa Alegre

    Department of Medicine, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Alexander S Banks

    Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1787-6925
  21. Hao Zhou

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Abdallah Elkhal

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Stefan G Tullius

    Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Boston, United States
    For correspondence
    stullius@partners.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3058-3166

Funding

National Institutes of Health (UO-1 A1 132898)

  • Stefan G Tullius

Deutsche Forschungsgemeinschaft (QU 420/1-1)

  • Markus Quante

Deutsche Forschungsgemeinschaft (HE 7457/1-1)

  • Timm Heinbokel

Deutsche Forschungsgemeinschaft (KR 4362/1-1)

  • Felix Krenzien

Chinese Scholarship Council (201606370196)

  • Yeqi Nian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal use and care were in accordance with institutional and National Institutes of Health guidelines. The study protocol was approved by the Brigham and Women´s Hospital Institutional Animal Care and use Committee (IACUC) animal protocol (animal protocol 2016N000371).

Human subjects: Serum samples from patients prior to and 3 months post sleeve gastrectomy were obtained with approval of the Brigham and Women's Hospital (BWH) Institutional Review Board and through cooperation with Dr. Eric G. Sheu and the Center for Metabolic and Bariatric Surgery at BWH. Informed consent was obtained from all patients and samples were collected following BWH ethical regulations.

Copyright

© 2021, Quante et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,249
    views
  • 173
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Markus Quante
  2. Jasper Iske
  3. Timm Heinbokel
  4. Bhavna N Desai
  5. Hector Rodriguez Cetina Biefer
  6. Yeqi Nian
  7. Felix Krenzien
  8. Tomohisa Matsunaga
  9. Hirofumi Uehara
  10. Ryoichi Maenosono
  11. Haruhito Azuma
  12. Johann Pratschke
  13. Christine S Falk
  14. Tammy Lo
  15. Eric Sheu
  16. Ali Tavakkoli
  17. Reza Abdi
  18. David L Perkins
  19. Maria-Luisa Alegre
  20. Alexander S Banks
  21. Hao Zhou
  22. Abdallah Elkhal
  23. Stefan G Tullius
(2021)
Restored TDCA and valine levels imitate the effects of bariatric surgery
eLife 10:e62928.
https://doi.org/10.7554/eLife.62928

Share this article

https://doi.org/10.7554/eLife.62928

Further reading

    1. Medicine
    2. Neuroscience
    Sophie Leclercq, Hany Ahmed ... Nathalie Delzenne
    Research Article

    Background:

    Alcohol use disorder (AUD) is a global health problem with limited therapeutic options. The biochemical mechanisms that lead to this disorder are not yet fully understood, and in this respect, metabolomics represents a promising approach to decipher metabolic events related to AUD. The plasma metabolome contains a plethora of bioactive molecules that reflects the functional changes in host metabolism but also the impact of the gut microbiome and nutritional habits.

    Methods:

    In this study, we investigated the impact of severe AUD (sAUD), and of a 3-week period of alcohol abstinence, on the blood metabolome (non-targeted LC-MS metabolomics analysis) in 96 sAUD patients hospitalized for alcohol withdrawal.

    Results:

    We found that the plasma levels of different lipids ((lyso)phosphatidylcholines, long-chain fatty acids), short-chain fatty acids (i.e. 3-hydroxyvaleric acid) and bile acids were altered in sAUD patients. In addition, several microbial metabolites, including indole-3-propionic acid, p-cresol sulfate, hippuric acid, pyrocatechol sulfate, and metabolites belonging to xanthine class (paraxanthine, theobromine and theophylline) were sensitive to alcohol exposure and alcohol withdrawal. 3-Hydroxyvaleric acid, caffeine metabolites (theobromine, paraxanthine, and theophylline) and microbial metabolites (hippuric acid and pyrocatechol sulfate) were correlated with anxiety, depression and alcohol craving. Metabolomics analysis in postmortem samples of frontal cortex and cerebrospinal fluid of those consuming a high level of alcohol revealed that those metabolites can be found also in brain tissue.

    Conclusions:

    Our data allow the identification of neuroactive metabolites, from interactions between food components and microbiota, which may represent new targets arising in the management of neuropsychiatric diseases such as sAUD.

    Funding:

    Gut2Behave project was initiated from ERA-NET NEURON network (Joint Transnational Call 2019) and was financed by Academy of Finland, French National Research Agency (ANR-19-NEUR-0003-03) and the Fonds de la Recherche Scientifique (FRS-FNRS; PINT-MULTI R.8013.19, Belgium). Metabolomics analysis of the TSDS samples was supported by grant from the Finnish Foundation for Alcohol Studies.

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.