1. Medicine
Download icon

Restored TDCA and valine levels imitate the effects of bariatric surgery

  1. Markus Quante
  2. Jasper Iske
  3. Timm Heinbokel
  4. Bhavna N Desai
  5. Hector Rodriguez Cetina Biefer
  6. Yeqi Nian
  7. Felix Krenzien
  8. Tomohisa Matsunaga
  9. Hirofumi Uehara
  10. Ryoichi Maenosono
  11. Haruhito Azuma
  12. Johann Pratschke
  13. Christine S Falk
  14. Tammy Lo
  15. Eric Sheu
  16. Ali Tavakkoli
  17. Reza Abdi
  18. David L Perkins
  19. Maria-Luisa Alegre
  20. Alexander S Banks
  21. Hao Zhou
  22. Abdallah Elkhal
  23. Stefan G Tullius  Is a corresponding author
  1. Brigham and Women's Hospital, United States
  2. Beth Israel Deaconess Medical Center, United States
  3. Charité Universitätsmedizin Berlin, Germany
  4. Osaka Medical College, Japan
  5. Hannover Medical School, Germany
  6. University of Illinois at Chicago, United States
  7. Beth Israel Deaconess Medical Center and Harvard Medical School, United States
Research Article
  • Cited 0
  • Views 674
  • Annotations
Cite this article as: eLife 2021;10:e62928 doi: 10.7554/eLife.62928

Abstract

Background: Obesity is widespread and linked to various co-morbidities. Bariatric surgery has been identified as the only effective treatment, promoting sustained weight loss and the remission of co-morbidities.

Methods: Metabolic profiling was performed on diet induced obese (DIO) mice, lean mice and DIO mice that underwent sleeve gastrectomies. In addition, mice were subjected to i.p. injections with TDCA and valine. Indirect calorimetry was performed to assess food intake and energy expenditure. Expression of appetite regulating hormones was assessed through quantification of isolated RNA from dissected hypothalamus tissue. Subsequently, i.p. injections with an MCH antagonist and intrathecal administration of melanin-concentrating hormone were performed and weight loss was monitored.

Results: Mass-spectrometric metabolomic profiling revealed significantly reduced systemic levels of TDCA and L-valine in DIO mice. TDCA and L-Valine levels were restored after sleeve gastrectomies (SGx) in both human and mice to levels comparable with lean controls. Systemic treatment with TDCA and valine induced a profound weight loss analogous to effects observed after SGx. Utilizing indirect calorimetry, we confirmed reduced food intake as causal for TDCA/valine-mediated weight loss via a central inhibition of the melanin-concentrating hormone.

Conclusions: In summary, we identified restored TDCA/valine levels as an underlying mechanism of SGx-derived effects on weight loss. Of translational relevance, TDCA and L-valine are presented as novel agents promoting weight loss while reversing obesity-associated metabolic disorders.

Data availability

All relevant data supporting the findings of this study are available as source data files.

Article and author information

Author details

  1. Markus Quante

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jasper Iske

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Timm Heinbokel

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bhavna N Desai

    Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hector Rodriguez Cetina Biefer

    Departrment of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Yeqi Nian

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Felix Krenzien

    Department of Visceral, Abdominal and Transplantation Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Tomohisa Matsunaga

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hirofumi Uehara

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ryoichi Maenosono

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Haruhito Azuma

    Urology, Osaka Medical College, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Johann Pratschke

    Department of Visceral, Abdominal and Transplantation Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Christine S Falk

    Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Tammy Lo

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Eric Sheu

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Ali Tavakkoli

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Reza Abdi

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. David L Perkins

    Department of Medicine, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Maria-Luisa Alegre

    Department of Medicine, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Alexander S Banks

    Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1787-6925
  21. Hao Zhou

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Abdallah Elkhal

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Stefan G Tullius

    Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Boston, United States
    For correspondence
    stullius@partners.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3058-3166

Funding

National Institutes of Health (UO-1 A1 132898)

  • Stefan G Tullius

Deutsche Forschungsgemeinschaft (QU 420/1-1)

  • Markus Quante

Deutsche Forschungsgemeinschaft (HE 7457/1-1)

  • Timm Heinbokel

Deutsche Forschungsgemeinschaft (KR 4362/1-1)

  • Felix Krenzien

Chinese Scholarship Council (201606370196)

  • Yeqi Nian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal use and care were in accordance with institutional and National Institutes of Health guidelines. The study protocol was approved by the Brigham and Women´s Hospital Institutional Animal Care and use Committee (IACUC) animal protocol (animal protocol 2016N000371).

Human subjects: Serum samples from patients prior to and 3 months post sleeve gastrectomy were obtained with approval of the Brigham and Women's Hospital (BWH) Institutional Review Board and through cooperation with Dr. Eric G. Sheu and the Center for Metabolic and Bariatric Surgery at BWH. Informed consent was obtained from all patients and samples were collected following BWH ethical regulations.

Reviewing Editor

  1. Ralph J DeBerardinis, UT Southwestern Medical Center, United States

Publication history

  1. Received: September 9, 2020
  2. Accepted: May 20, 2021
  3. Accepted Manuscript published: June 22, 2021 (version 1)
  4. Version of Record published: July 5, 2021 (version 2)

Copyright

© 2021, Quante et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 674
    Page views
  • 82
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    Nguyen Thi Thuy Ngan et al.
    Research Article

    Background: Cryptococcal meningitis has high mortality. Flucytosine is a key treatment but is expensive and rarely available. The anti-cancer agent tamoxifen has synergistic anti-cryptococcal activity with amphotericin in vitro. It is off-patent, cheap, and widely available. We performed a trial to determine its therapeutic potential.

    Methods:Open label randomized controlled trial. Participants received standard care - amphotericin combined with fluconazole for the first two weeks - or standard care plus tamoxifen 300mg/day. The primary end point was Early Fungicidal Activity (EFA) - the rate of yeast clearance from cerebrospinal fluid (CSF). Trial registration https://clinicaltrials.gov/ct2/show/NCT03112031 .

    Results: 50 patients were enrolled, (median age 34 years, 35 male). Tamoxifen had no effect on EFA (- 0.48log10 colony-forming units/mL/CSF control arm versus -0.49 tamoxifen arm, difference - 0.005log10CFU/ml/day, 95%CI: -0.16, 0.15, P=0.95). Tamoxifen caused QTc prolongation.

    Conclusion: High dose tamoxifen does not increase the clearance rate of Cryptococcus from CSF. Novel, affordable therapies are needed.

    Funding:The trial was funded through the Wellcome Trust Asia Programme Vietnam Core Grant 106680 and a Wellcome Trust Intermediate Fellowship to JND grant number WT097147MA.

    1. Medicine
    Corrado Sandini et al.
    Research Article

    Causal interactions between specific psychiatric symptoms could contribute to the heterogenous clinical trajectories observed in early psychopathology. Current diagnostic approaches merge clinical manifestations that co-occur across subjects and could significantly hinder our understanding of clinical pathways connecting individual symptoms. Network analysis techniques have emerged as alternative approaches that could help shed light on the complex dynamics of early psychopathology. The present study attempts to address the two main limitations that have in our opinion hindered the application of network approaches in the clinical setting. Firstly, we show that a multi-layer network analysis approach, can move beyond a static view of psychopathology, by providing an intuitive characterization of the role of specific symptoms in contributing to clinical trajectories over time. Secondly, we show that a Graph-Signal-Processing approach, can exploit knowledge of longitudinal interactions between symptoms, to predict clinical trajectories at the level of the individual. We test our approaches in two independent samples of individuals with genetic and clinical vulnerability for developing psychosis. Novel network approaches can allow to embrace the dynamic complexity of early psychopathology and help pave the way towards a more a personalized approach to clinical care.