1. Neuroscience
Download icon

Co-targeting myelin inhibitors and CSPGs markedly enhances regeneration of GDNF-stimulated, but not conditioning-lesioned, sensory axons into the spinal cord

Research Article
  • Cited 1
  • Views 441
  • Annotations
Cite this article as: eLife 2021;10:e63050 doi: 10.7554/eLife.63050

Abstract

A major barrier to intraspinal regeneration after dorsal root (DR) injury is the DR entry zone (DREZ), the CNS/PNS interface. DR axons stop regenerating at the DREZ, even if regenerative capacity is increased by a nerve conditioning lesion. This potent blockade has long been attributed to myelin-associated inhibitors and CSPGs, but incomplete lesions and conflicting reports have prevented conclusive agreement. Here we evaluated DR regeneration in mice, using novel strategies to facilitate complete lesions and analyses, selective tracing of proprioceptive and mechanoreceptive axons, and the first simultaneous targeting of Nogo/Reticulon-4, MAG, OMgp, CSPGs and GDNF. Co-eliminating myelin inhibitors and CSPGs elicited regeneration of only a few conditioning-lesioned DR axons across the DREZ. Their absence, however, markedly and synergistically enhanced regeneration of GDNF-stimulated axons, highlighting the importance of sufficiently elevating intrinsic growth capacity. We also conclude that myelin inhibitors and CSPGs are not the primary mechanism stopping axons at the DREZ.

Data availability

Numerical data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been submitted for Figures 3, 4, 5,6, 6-S1, 7, 8, 9.

Article and author information

Author details

  1. Jinbin Zhai

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hyukmin Kim

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Seung Baek Han

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Meredith Manire

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rachel Yoo

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shuhuan Pang

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. George M Smith

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Young-Jin Son

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    For correspondence
    yson@temple.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5725-9775

Funding

National Institute of Neurological Disorders and Stroke (NS079631)

  • Young-Jin Son

Shriners Hospitals for Children (86600,84050)

  • Young-Jin Son

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal care and procedures were conducted in accordance with the National Research Council's Guide for the Care and Use of Laboratory Animals and approved by the Institutional Animal Care and Use Committee at Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA. (animal protocol #4919),

Reviewing Editor

  1. Lilianna Solnica-Krezel, Washington University School of Medicine, United States

Publication history

  1. Received: September 11, 2020
  2. Accepted: May 3, 2021
  3. Accepted Manuscript published: May 4, 2021 (version 1)
  4. Version of Record published: May 21, 2021 (version 2)

Copyright

© 2021, Zhai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 441
    Page views
  • 89
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Debora Fusca, Peter Kloppenburg
    Research Article

    Local interneurons (LNs) mediate complex interactions within the antennal lobe, the primary olfactory system of insects, and the functional analog of the vertebrate olfactory bulb. In the cockroach Periplaneta americana, as in other insects, several types of LNs with distinctive physiological and morphological properties can be defined. Here, we combined whole-cell patch-clamp recordings and Ca2+ imaging of individual LNs to analyze the role of spiking and nonspiking LNs in inter- and intraglomerular signaling during olfactory information processing. Spiking GABAergic LNs reacted to odorant stimulation with a uniform rise in [Ca2+]i in the ramifications of all innervated glomeruli. In contrast, in nonspiking LNs, glomerular Ca2+ signals were odorant specific and varied between glomeruli, resulting in distinct, glomerulus-specific tuning curves. The cell type-specific differences in Ca2+ dynamics support the idea that spiking LNs play a primary role in interglomerular signaling, while they assign nonspiking LNs an essential role in intraglomerular signaling.

    1. Neuroscience
    Wanhui Sheng et al.
    Research Article Updated

    Hypothalamic oxytocinergic magnocellular neurons have a fascinating ability to release peptide from both their axon terminals and from their dendrites. Existing data indicates that the relationship between somatic activity and dendritic release is not constant, but the mechanisms through which this relationship can be modulated are not completely understood. Here, we use a combination of electrical and optical recording techniques to quantify activity-induced calcium influx in proximal vs. distal dendrites of oxytocinergic magnocellular neurons located in the paraventricular nucleus of the hypothalamus (OT-MCNs). Results reveal that the dendrites of OT-MCNs are weak conductors of somatic voltage changes; however, activity-induced dendritic calcium influx can be robustly regulated by both osmosensitive and non-osmosensitive ion channels located along the dendritic membrane. Overall, this study reveals that dendritic conductivity is a dynamic and endogenously regulated feature of OT-MCNs that is likely to have substantial functional impact on central oxytocin release.