Subcellular sequencing of single neurons reveals the dendritic transcriptome of GABAergic interneurons

Abstract

Although mRNAs are localized in the processes of excitatory neurons, it is still unclear whether interneurons also localize a large population of mRNAs. In addition, the variability in the localized mRNA population within and between cell-types is unknown. Here we describe the unbiased transcriptomic characterization of the subcellular compartments of hundreds of single neurons. We separately profiled the dendritic and somatic transcriptomes of individual rat hippocampal neurons and investigated mRNA abundances in the soma and dendrites of single glutamatergic and GABAergic neurons. We found that, like their excitatory counterparts, interneurons contain a rich repertoire of ~4000 mRNAs. We observed more cell type-specific features among somatic transcriptomes than their associated dendritic transcriptomes. Finally, using cell-type specific metabolic labelling of isolated neurites, we demonstrated that the processes of Glutamatergic and, notably, GABAergic neurons were capable of local translation, suggesting mRNA localization and local translation is a general property of neurons.

Data availability

Sequencing data have been deposited in GEO under accession code GSE157204

The following data sets were generated

Article and author information

Author details

  1. Julio D Perez

    Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8769-9306
  2. Susanne tom Dieck

    Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5884-8640
  3. Beatriz Alvarez-Castelao

    Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7505-1855
  4. Georgi Tushev

    Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Ivy CW Chan

    Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Erin M Schuman

    Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
    For correspondence
    erin.schuman@brain.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7053-1005

Funding

H2020 European Research Council

  • Erin M Schuman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The procedures involving animal treatment and care wereconducted in conformity with the institutional guidelines that are in compliance with thenational and international laws and policies (DIRECTIVE2010/63/EU; German animalwelfare law, FELASA guidelines) and approved by and reported to the local governmentalsupervising authorities (Regierungspräsidium Darmstadt). The animals were euthanizedaccording to annex 2 of {section sign}2 Abs. 2 Tierschutz-Versuchstier-Verordnung.

Copyright

© 2021, Perez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julio D Perez
  2. Susanne tom Dieck
  3. Beatriz Alvarez-Castelao
  4. Georgi Tushev
  5. Ivy CW Chan
  6. Erin M Schuman
(2021)
Subcellular sequencing of single neurons reveals the dendritic transcriptome of GABAergic interneurons
eLife 10:e63092.
https://doi.org/10.7554/eLife.63092

Share this article

https://doi.org/10.7554/eLife.63092

Further reading

    1. Neuroscience
    Arthur D Kuo
    Insight

    A mathematical model can predict the path walkers take through a rugged landscape, including the tendency of people to avoid paths that are too steep, even if it means going farther.

    1. Computational and Systems Biology
    2. Neuroscience
    Bernhard Englitz, Sahar Akram ... Shihab Shamma
    Research Article

    Perception can be highly dependent on stimulus context, but whether and how sensory areas encode the context remains uncertain. We used an ambiguous auditory stimulus – a tritone pair – to investigate the neural activity associated with a preceding contextual stimulus that strongly influenced the tritone pair’s perception: either as an ascending or a descending step in pitch. We recorded single-unit responses from a population of auditory cortical cells in awake ferrets listening to the tritone pairs preceded by the contextual stimulus. We find that the responses adapt locally to the contextual stimulus, consistent with human MEG recordings from the auditory cortex under the same conditions. Decoding the population responses demonstrates that cells responding to pitch-changes are able to predict well the context-sensitive percept of the tritone pairs. Conversely, decoding the individual pitch representations and taking their distance in the circular Shepard tone space predicts the opposite of the percept. The various percepts can be readily captured and explained by a neural model of cortical activity based on populations of adapting, pitch and pitch-direction cells, aligned with the neurophysiological responses. Together, these decoding and model results suggest that contextual influences on perception may well be already encoded at the level of the primary sensory cortices, reflecting basic neural response properties commonly found in these areas.