Subcellular sequencing of single neurons reveals the dendritic transcriptome of GABAergic interneurons
Abstract
Although mRNAs are localized in the processes of excitatory neurons, it is still unclear whether interneurons also localize a large population of mRNAs. In addition, the variability in the localized mRNA population within and between cell-types is unknown. Here we describe the unbiased transcriptomic characterization of the subcellular compartments of hundreds of single neurons. We separately profiled the dendritic and somatic transcriptomes of individual rat hippocampal neurons and investigated mRNA abundances in the soma and dendrites of single glutamatergic and GABAergic neurons. We found that, like their excitatory counterparts, interneurons contain a rich repertoire of ~4000 mRNAs. We observed more cell type-specific features among somatic transcriptomes than their associated dendritic transcriptomes. Finally, using cell-type specific metabolic labelling of isolated neurites, we demonstrated that the processes of Glutamatergic and, notably, GABAergic neurons were capable of local translation, suggesting mRNA localization and local translation is a general property of neurons.
Data availability
Sequencing data have been deposited in GEO under accession code GSE157204
Article and author information
Author details
Funding
H2020 European Research Council
- Erin M Schuman
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The procedures involving animal treatment and care wereconducted in conformity with the institutional guidelines that are in compliance with thenational and international laws and policies (DIRECTIVE2010/63/EU; German animalwelfare law, FELASA guidelines) and approved by and reported to the local governmentalsupervising authorities (Regierungspräsidium Darmstadt). The animals were euthanizedaccording to annex 2 of {section sign}2 Abs. 2 Tierschutz-Versuchstier-Verordnung.
Reviewing Editor
- Genevieve Konopka, University of Texas Southwestern Medical Center, United States
Publication history
- Received: October 15, 2020
- Accepted: January 5, 2021
- Accepted Manuscript published: January 6, 2021 (version 1)
- Version of Record published: January 21, 2021 (version 2)
Copyright
© 2021, Perez et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,563
- Page views
-
- 720
- Downloads
-
- 23
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Neuroscience
How does wiring specificity of neural maps emerge during development? Formation of the adult Drosophila olfactory glomerular map begins with patterning of projection neuron (PN) dendrites at the early pupal stage. To better understand the origin of wiring specificity of this map, we created genetic tools to systematically characterize dendrite patterning across development at PN type-specific resolution. We find that PNs use lineage and birth order combinatorially to build the initial dendritic map. Specifically, birth order directs dendrite targeting in rotating and binary manners for PNs of the anterodorsal and lateral lineages, respectively. Two-photon- and adaptive optical lattice light-sheet microscope-based time-lapse imaging reveals that PN dendrites initiate active targeting with direction-dependent branch stabilization on the timescale of seconds. Moreover, PNs that are used in both the larval and adult olfactory circuits prune their larval-specific dendrites and re-extend new dendrites simultaneously to facilitate timely olfactory map organization. Our work highlights the power and necessity of type-specific neuronal access and time-lapse imaging in identifying wiring mechanisms that underlie complex patterns of functional neural maps.
-
- Neuroscience
Comparing connectomes can help explain how neural connectivity is related to genetics, disease, development, learning, and behavior. However, making statistical inferences about the significance and nature of differences between two networks is an open problem, and such analysis has not been extensively applied to nanoscale connectomes. Here, we investigate this problem via a case study on the bilateral symmetry of a larval Drosophila brain connectome. We translate notions of'bilateral symmetry' to generative models of the network structure of the left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find significant differences in connection probabilities both across the entire left and right networks and between specific cell types. By rescaling connection probabilities or removing certain edges based on weight, we also present adjusted definitions of bilateral symmetry exhibited by this connectome. This work shows how statistical inferences from networks can inform the study of connectomes, facilitating future comparisons of neural structures.