Simultaneous recording of multiple cellular signaling events by frequency- and spectrally-tuned multiplexing of fluorescent probes

  1. Michelina Kierzek
  2. Parker E Deal
  3. Evan W Miller
  4. Shatanik Mukherjee
  5. Dagmar Wachten
  6. Arnd Baumann
  7. U Benjamin Kaupp
  8. Timo Strünker  Is a corresponding author
  9. Christoph Brenker  Is a corresponding author
  1. University of Münster, Germany
  2. University of California, Berkeley, United States
  3. Center of Advanced European Studies and Research, Germany
  4. University of Bonn, Germany
  5. Research Center Jülich, Germany

Abstract

Fluorescent probes that change their spectral properties upon binding to small biomolecules, ions, or changes in the membrane potential (Vm) are invaluable tools to study cellular signaling pathways. Here, we introduce a novel technique for simultaneous recording of multiple probes at millisecond time resolution: frequency- and spectrally-tuned multiplexing (FASTM). Different from present multiplexing approaches, FASTM uses phase-sensitive signal detection, which renders various combinations of common probes for Vm and ions accessible for multiplexing. Using kinetic stopped-flow fluorimetry, we show that FASTM allows simultaneous recording of rapid changes in Ca2+, pH, Na+, and Vm with high sensitivity and minimal crosstalk. FASTM is also suited for multiplexing using single-cell microscopy and genetically-encoded FRET biosensors. Moreover, FASTM is compatible with opto-chemical tools to study signaling using light. Finally, we show that the exceptional time resolution of FASTM also allows resolving rapid chemical reactions. Altogether, FASTM opens new opportunities for interrogating cellular signaling.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source Data files have been provided for Figures 3, 5, 7, 9 and 11.

Article and author information

Author details

  1. Michelina Kierzek

    Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Parker E Deal

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Evan W Miller

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6556-7679
  4. Shatanik Mukherjee

    Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7359-9339
  5. Dagmar Wachten

    Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4800-6332
  6. Arnd Baumann

    Institute of Biological Information Processing (IBI-1), Research Center Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. U Benjamin Kaupp

    Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Timo Strünker

    Center of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
    For correspondence
    timo.struenker@ukmuenster.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0812-1547
  9. Christoph Brenker

    Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
    For correspondence
    christoph.brenker@ukmuenster.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4230-2571

Funding

Deutsche Forschungsgemeinschaft (STR 1342/3-1)

  • Timo Strünker

Deutsche Forschungsgemeinschaft (CRU326)

  • Timo Strünker
  • Christoph Brenker

Deutsche Forschungsgemeinschaft (EXC2151 - 390873048)

  • Dagmar Wachten

Innovative Medical Research of the University of Muenster Medical School (BR 1 2 15 07)

  • Christoph Brenker

Center for Clinical Research, Münster (Str/014/21)

  • Timo Strünker

National Institute of General Medical Sciences (R35GM119855)

  • Evan W Miller

Deutsche Forschungsgemeinschaft (GRK2515)

  • Timo Strünker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard S Lewis, Stanford University School of Medicine, United States

Version history

  1. Received: September 15, 2020
  2. Accepted: December 1, 2021
  3. Accepted Manuscript published: December 3, 2021 (version 1)
  4. Version of Record published: December 23, 2021 (version 2)

Copyright

© 2021, Kierzek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,659
    views
  • 241
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michelina Kierzek
  2. Parker E Deal
  3. Evan W Miller
  4. Shatanik Mukherjee
  5. Dagmar Wachten
  6. Arnd Baumann
  7. U Benjamin Kaupp
  8. Timo Strünker
  9. Christoph Brenker
(2021)
Simultaneous recording of multiple cellular signaling events by frequency- and spectrally-tuned multiplexing of fluorescent probes
eLife 10:e63129.
https://doi.org/10.7554/eLife.63129

Share this article

https://doi.org/10.7554/eLife.63129

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.