Simultaneous recording of multiple cellular signaling events by frequency- and spectrally-tuned multiplexing of fluorescent probes

  1. Michelina Kierzek
  2. Parker E Deal
  3. Evan W Miller
  4. Shatanik Mukherjee
  5. Dagmar Wachten
  6. Arnd Baumann
  7. U Benjamin Kaupp
  8. Timo Strünker  Is a corresponding author
  9. Christoph Brenker  Is a corresponding author
  1. University of Münster, Germany
  2. University of California, Berkeley, United States
  3. Center of Advanced European Studies and Research, Germany
  4. University of Bonn, Germany
  5. Research Center Jülich, Germany

Abstract

Fluorescent probes that change their spectral properties upon binding to small biomolecules, ions, or changes in the membrane potential (Vm) are invaluable tools to study cellular signaling pathways. Here, we introduce a novel technique for simultaneous recording of multiple probes at millisecond time resolution: frequency- and spectrally-tuned multiplexing (FASTM). Different from present multiplexing approaches, FASTM uses phase-sensitive signal detection, which renders various combinations of common probes for Vm and ions accessible for multiplexing. Using kinetic stopped-flow fluorimetry, we show that FASTM allows simultaneous recording of rapid changes in Ca2+, pH, Na+, and Vm with high sensitivity and minimal crosstalk. FASTM is also suited for multiplexing using single-cell microscopy and genetically-encoded FRET biosensors. Moreover, FASTM is compatible with opto-chemical tools to study signaling using light. Finally, we show that the exceptional time resolution of FASTM also allows resolving rapid chemical reactions. Altogether, FASTM opens new opportunities for interrogating cellular signaling.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source Data files have been provided for Figures 3, 5, 7, 9 and 11.

Article and author information

Author details

  1. Michelina Kierzek

    Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Parker E Deal

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Evan W Miller

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6556-7679
  4. Shatanik Mukherjee

    Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7359-9339
  5. Dagmar Wachten

    Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4800-6332
  6. Arnd Baumann

    Institute of Biological Information Processing (IBI-1), Research Center Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. U Benjamin Kaupp

    Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Timo Strünker

    Center of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
    For correspondence
    timo.struenker@ukmuenster.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0812-1547
  9. Christoph Brenker

    Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
    For correspondence
    christoph.brenker@ukmuenster.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4230-2571

Funding

Deutsche Forschungsgemeinschaft (STR 1342/3-1)

  • Timo Strünker

Deutsche Forschungsgemeinschaft (CRU326)

  • Timo Strünker
  • Christoph Brenker

Deutsche Forschungsgemeinschaft (EXC2151 - 390873048)

  • Dagmar Wachten

Innovative Medical Research of the University of Muenster Medical School (BR 1 2 15 07)

  • Christoph Brenker

Center for Clinical Research, Münster (Str/014/21)

  • Timo Strünker

National Institute of General Medical Sciences (R35GM119855)

  • Evan W Miller

Deutsche Forschungsgemeinschaft (GRK2515)

  • Timo Strünker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Kierzek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,726
    views
  • 261
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michelina Kierzek
  2. Parker E Deal
  3. Evan W Miller
  4. Shatanik Mukherjee
  5. Dagmar Wachten
  6. Arnd Baumann
  7. U Benjamin Kaupp
  8. Timo Strünker
  9. Christoph Brenker
(2021)
Simultaneous recording of multiple cellular signaling events by frequency- and spectrally-tuned multiplexing of fluorescent probes
eLife 10:e63129.
https://doi.org/10.7554/eLife.63129

Share this article

https://doi.org/10.7554/eLife.63129

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.