Local circuit allowing hypothalamic control of hippocampal area CA2 activity and consequences for CA1

  1. Vincent Robert
  2. Ludivine Therreau
  3. Vivien Chevaleyre
  4. Eude Lepicard
  5. Cécile Viollet
  6. Julie Cognet
  7. Arthur JY Huang
  8. Roman Boehringer
  9. Denis Polygalov
  10. Thomas J McHugh
  11. Rebecca Ann Piskorowski  Is a corresponding author
  1. Institute of Psychiatry and Neuroscience of Paris, INSERM UMRS1266, France
  2. Institute of Psychiatry and Neuroscience of Paris, INSERM UMRS1266; GHU PARIS psychiatrie & neurosciences, France
  3. RIKEN Center for Brain Science, Japan

Abstract

The hippocampus is critical for memory formation. The hypothalamic supramammillary nucleus (SuM) sends long-range projections to hippocampal area CA2. While the SuM-CA2 connection is critical for social memory, how this input acts on the local circuit is unknown. Using mice, we found that SuM axon stimulation elicited mixed excitatory and inhibitory responses in area CA2 pyramidal neurons (PNs). Parvalbumin-expressing basket cells were largely responsible for the feedforward inhibitory drive of SuM over area CA2. Inhibition recruited by the SuM input onto CA2 PNs increased the precision of action potential firing both in conditions of low and high cholinergic tone. Furthermore, SuM stimulation in area CA2 modulated CA1 activity, indicating that synchronized CA2 output drives a pulsed inhibition in area CA1. Hence, the network revealed here lays basis for understanding how SuM activity directly acts on the local hippocampal circuit to allow social memory encoding.

Data availability

The data analysed for this study are included in the manuscript and supporting files. These are included in tables, and data file for figure 7.

Article and author information

Author details

  1. Vincent Robert

    Team of Synpatic Plasticity and Neural Networks, Institute of Psychiatry and Neuroscience of Paris, INSERM UMRS1266, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Ludivine Therreau

    Team of Synpatic Plasticity and Neural Networks, Institute of Psychiatry and Neuroscience of Paris, INSERM UMRS1266, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Vivien Chevaleyre

    Team of Synpatic Plasticity and Neural Networks, Institute of Psychiatry and Neuroscience of Paris, INSERM UMRS1266, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Eude Lepicard

    Team of Synpatic Plasticity and Neural Networks, Institute of Psychiatry and Neuroscience of Paris, INSERM UMRS1266, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Cécile Viollet

    Institute of Psychiatry and Neuroscience of Paris, INSERM UMRS1266; GHU PARIS psychiatrie & neurosciences, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Julie Cognet

    Team of Synpatic Plasticity and Neural Networks, Institute of Psychiatry and Neuroscience of Paris, INSERM UMRS1266, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Arthur JY Huang

    Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Roman Boehringer

    Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2856-3262
  9. Denis Polygalov

    Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8165-5257
  10. Thomas J McHugh

    Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1243-5189
  11. Rebecca Ann Piskorowski

    Institute of Psychiatry and Neuroscience of Paris, INSERM UMRS1266; GHU PARIS psychiatrie & neurosciences, Paris, France
    For correspondence
    rebecca.piskorowski@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0120-2360

Funding

RIKEN Brain Science Institute

  • Thomas J McHugh

Ministry of Education, Culture, Sports, Science and Technology (19H05646)

  • Thomas J McHugh

Ministry of Education, Culture, Sports, Science and Technology (19H05233)

  • Thomas J McHugh

Agence Nationale de la Recherche (ANR-13-JSV4-0002-01)

  • Rebecca Ann Piskorowski

Agence Nationale de la Recherche (ANR-18-CE37-0020-01)

  • Rebecca Ann Piskorowski

Ville de Paris (Programme Emergences)

  • Rebecca Ann Piskorowski

Brain and Behavior Research Foundation (NARSAD Young INvestigator Award)

  • Rebecca Ann Piskorowski

Fondation pour la Recherche Médicale (FRM:FTD20170437387)

  • Vincent Robert

Schizo-Oui

  • Vincent Robert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals were performed in accordance with institutional regulations (French Ministry of Research and Education protocol #12406-2016040417305913). Animal sample sizes were estimated using power tests with standard deviations and ANOVA values from pilot experiments. A 15 % failure rate was assumed to account for stereotaxic injection errors and slice preparation complications. Every effort was made to reduce animal suffering.

Reviewing Editor

  1. Katalin Toth, University of Ottawa, Canada

Publication history

  1. Received: September 22, 2020
  2. Accepted: May 17, 2021
  3. Accepted Manuscript published: May 18, 2021 (version 1)
  4. Version of Record published: May 26, 2021 (version 2)

Copyright

© 2021, Robert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,330
    Page views
  • 382
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vincent Robert
  2. Ludivine Therreau
  3. Vivien Chevaleyre
  4. Eude Lepicard
  5. Cécile Viollet
  6. Julie Cognet
  7. Arthur JY Huang
  8. Roman Boehringer
  9. Denis Polygalov
  10. Thomas J McHugh
  11. Rebecca Ann Piskorowski
(2021)
Local circuit allowing hypothalamic control of hippocampal area CA2 activity and consequences for CA1
eLife 10:e63352.
https://doi.org/10.7554/eLife.63352

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Kai J Sandbrink, Pranav Mamidanna ... Alexander Mathis
    Research Article

    Biological motor control is versatile, efficient, and depends on proprioceptive feedback. Muscles are flexible and undergo continuous changes, requiring distributed adaptive control mechanisms that continuously account for the body's state. The canonical role of proprioception is representing the body state. We hypothesize that the proprioceptive system could also be critical for high-level tasks such as action recognition. To test this theory, we pursued a task-driven modeling approach, which allowed us to isolate the study of proprioception. We generated a large synthetic dataset of human arm trajectories tracing characters of the Latin alphabet in 3D space, together with muscle activities obtained from a musculoskeletal model and model-based muscle spindle activity. Next, we compared two classes of tasks: trajectory decoding and action recognition, which allowed us to train hierarchical models to decode either the position and velocity of the end-effector of one's posture or the character (action) identity from the spindle firing patterns. We found that artificial neural networks could robustly solve both tasks, and the networks'units show tuning properties similar to neurons in the primate somatosensory cortex and the brainstem. Remarkably, we found uniformly distributed directional selective units only with the action-recognition-trained models and not the trajectory-decoding-trained models. This suggests that proprioceptive encoding is additionally associated with higher-level functions such as action recognition and therefore provides new, experimentally testable hypotheses of how proprioception aids in adaptive motor control.

    1. Neuroscience
    Meghan Laturney, Gabriella R Sterne, Kristin Scott
    Research Article Updated

    Mated females reallocate resources to offspring production, causing changes to nutritional requirements and challenges to energy homeostasis. Although observed across species, the neural and endocrine mechanisms that regulate the nutritional needs of mated females are not well understood. Here, we find that mated Drosophila melanogaster females increase sugar intake, which is regulated by the activity of sexually dimorphic insulin receptor (Lgr3) neurons. In virgins, Lgr3+ cells have reduced activity as they receive inhibitory input from active, female-specific pCd-2 cells, restricting sugar intake. During copulation, males deposit sex peptide into the female reproductive tract, which silences a three-tier mating status circuit and initiates the female postmating response. We show that pCd-2 neurons also become silenced after mating due to the direct synaptic input from the mating status circuit. Thus, in mated females pCd-2 inhibition is attenuated, activating downstream Lgr3+ neurons and promoting sugar intake. Together, this circuit transforms the mated signal into a long-term hunger signal. Our results demonstrate that the mating circuit alters nutrient sensing centers to increase feeding in mated females, providing a mechanism to increase intake in anticipation of the energetic costs associated with reproduction.