Spherical arena reveals optokinetic response tuning to stimulus location, size, and frequency across entire visual field of larval zebrafish

  1. Florian Alexander Dehmelt
  2. Rebecca Meier
  3. Julian Hinz
  4. Takeshi Yoshimatsu
  5. Clara A Simacek
  6. Ruoyu Huang
  7. Kun Wang
  8. Tom Baden
  9. Aristides B Arrenberg  Is a corresponding author
  1. University of Tuebingen, Germany
  2. University of Sussex, UK, United Kingdom
  3. University of Sussex, United Kingdom

Abstract

Many animals have large visual fields, and sensory circuits may sample those regions of visual space most relevant to behaviours such as gaze stabilisation and hunting. Despite this, relatively small displays are often used in vision neuroscience. To sample stimulus locations across most of the visual field, we built a spherical stimulus arena with 14,848 independently controllable LEDs. We measured the optokinetic response gain of immobilised zebrafish larvae to stimuli of different steradian size and visual field locations. We find that the two eyes are less yoked than previously thought and that spatial frequency tuning is similar across visual field positions. However, zebrafish react most strongly to lateral, nearly equatorial stimuli, consistent with previously reported spatial densities of red, green and blue photoreceptors. Upside-down experiments suggest further extra-retinal processing. Our results demonstrate that motion vision circuits in zebrafish are anisotropic, and preferentially monitor areas with putative behavioural relevance.

Data availability

Analysis code, pre-processed data and examples of raw data have been deposited in GIN by G-Node and published under Digital Object Identifier 10.12751/g-node.qergnn

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Florian Alexander Dehmelt

    Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Rebecca Meier

    Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Julian Hinz

    Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Takeshi Yoshimatsu

    School of Life Sciences, University of Sussex, UK, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Clara A Simacek

    Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Ruoyu Huang

    Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Kun Wang

    Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Tom Baden

    School of Life Sciences, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2808-4210
  9. Aristides B Arrenberg

    Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
    For correspondence
    aristides.arrenberg@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8262-7381

Funding

Deutsche Forschungsgemeinschaft (EXC307 (Werner-Reichardt-Centrum))

  • Aristides B Arrenberg

Human Frontier Science Program (Young Investigator Grant RGY0079)

  • Aristides B Arrenberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were performed in accordance with licenses granted by local government authorities (Regierungspräsidium Tübingen) in accordance with German federal law and Baden-Württemberg state law. Approval of this license followed consultation of both in-house animal welfare officers and an external ethics board appointed by the local government.

Reviewing Editor

  1. Kristin Tessmar-Raible, University of Vienna, Austria

Publication history

  1. Received: September 22, 2020
  2. Accepted: June 7, 2021
  3. Accepted Manuscript published: June 8, 2021 (version 1)
  4. Version of Record published: June 25, 2021 (version 2)

Copyright

© 2021, Dehmelt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 924
    Page views
  • 114
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Florian Alexander Dehmelt
  2. Rebecca Meier
  3. Julian Hinz
  4. Takeshi Yoshimatsu
  5. Clara A Simacek
  6. Ruoyu Huang
  7. Kun Wang
  8. Tom Baden
  9. Aristides B Arrenberg
(2021)
Spherical arena reveals optokinetic response tuning to stimulus location, size, and frequency across entire visual field of larval zebrafish
eLife 10:e63355.
https://doi.org/10.7554/eLife.63355

Further reading

    1. Neuroscience
    Rong Zhao, Stacy D Grunke ... Joanna L Jankowsky
    Research Article

    Neurodegenerative diseases are characterized by selective vulnerability of distinct cell populations; however, the cause for this specificity remains elusive. Here we show that entorhinal cortex layer 2 (EC2) neurons are unusually vulnerable to prolonged neuronal inactivity compared with neighboring regions of the temporal lobe, and that reelin+ stellate cells connecting EC with the hippocampus are preferentially susceptible within the EC2 population. We demonstrate that neuronal death after silencing can be elicited through multiple independent means of activity inhibition, and that preventing synaptic release, either alone or in combination with electrical shunting, is sufficient to elicit silencing-induced degeneration. Finally, we discovered that degeneration following synaptic silencing is governed by competition between active and inactive cells, which is a circuit refinement process traditionally thought to end early in postnatal life. Our data suggests that the developmental window for wholesale circuit plasticity may extend into adulthood for specific brain regions. We speculate that this sustained potential for remodeling by entorhinal neurons may support lifelong memory but renders them vulnerable to prolonged activity changes in disease.

    1. Neuroscience
    Nace Mikus, Sebastian Korb ... Christoph Mathys
    Research Article

    Human behaviour requires flexible arbitration between actions we do out of habit and actions that are directed towards a specific goal. Drugs that target opioid and dopamine receptors are notorious for inducing maladaptive habitual drug consumption; yet, how the opioidergic and dopaminergic neurotransmitter systems contribute to the arbitration between habitual and goal-directed behaviour is poorly understood. By combining pharmacological challenges with a well-established decision-making task and a novel computational model, we show that the administration of the dopamine D2/3 receptor antagonist amisulpride led to an increase in goal-directed or ‘model-based’ relative to habitual or ‘model-free’ behaviour, whereas the non-selective opioid receptor antagonist naltrexone had no appreciable effect. The effect of amisulpride on model-based/model-free behaviour did not scale with drug serum levels in the blood. Furthermore, participants with higher amisulpride serum levels showed higher explorative behaviour. These findings highlight the distinct functional contributions of dopamine and opioid receptors to goal-directed and habitual behaviour and support the notion that even small doses of amisulpride promote flexible application of cognitive control.