Spherical arena reveals optokinetic response tuning to stimulus location, size, and frequency across entire visual field of larval zebrafish

  1. Florian Alexander Dehmelt
  2. Rebecca Meier
  3. Julian Hinz
  4. Takeshi Yoshimatsu
  5. Clara A Simacek
  6. Ruoyu Huang
  7. Kun Wang
  8. Tom Baden
  9. Aristides B Arrenberg  Is a corresponding author
  1. University of Tuebingen, Germany
  2. University of Sussex, UK, United Kingdom
  3. University of Sussex, United Kingdom

Abstract

Many animals have large visual fields, and sensory circuits may sample those regions of visual space most relevant to behaviours such as gaze stabilisation and hunting. Despite this, relatively small displays are often used in vision neuroscience. To sample stimulus locations across most of the visual field, we built a spherical stimulus arena with 14,848 independently controllable LEDs. We measured the optokinetic response gain of immobilised zebrafish larvae to stimuli of different steradian size and visual field locations. We find that the two eyes are less yoked than previously thought and that spatial frequency tuning is similar across visual field positions. However, zebrafish react most strongly to lateral, nearly equatorial stimuli, consistent with previously reported spatial densities of red, green and blue photoreceptors. Upside-down experiments suggest further extra-retinal processing. Our results demonstrate that motion vision circuits in zebrafish are anisotropic, and preferentially monitor areas with putative behavioural relevance.

Data availability

Analysis code, pre-processed data and examples of raw data have been deposited in GIN by G-Node and published under Digital Object Identifier 10.12751/g-node.qergnn

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Florian Alexander Dehmelt

    Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Rebecca Meier

    Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Julian Hinz

    Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Takeshi Yoshimatsu

    School of Life Sciences, University of Sussex, UK, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Clara A Simacek

    Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Ruoyu Huang

    Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Kun Wang

    Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Tom Baden

    School of Life Sciences, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2808-4210
  9. Aristides B Arrenberg

    Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
    For correspondence
    aristides.arrenberg@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8262-7381

Funding

Deutsche Forschungsgemeinschaft (EXC307 (Werner-Reichardt-Centrum))

  • Aristides B Arrenberg

Human Frontier Science Program (Young Investigator Grant RGY0079)

  • Aristides B Arrenberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were performed in accordance with licenses granted by local government authorities (Regierungspräsidium Tübingen) in accordance with German federal law and Baden-Württemberg state law. Approval of this license followed consultation of both in-house animal welfare officers and an external ethics board appointed by the local government.

Reviewing Editor

  1. Kristin Tessmar-Raible, University of Vienna, Austria

Publication history

  1. Received: September 22, 2020
  2. Accepted: June 7, 2021
  3. Accepted Manuscript published: June 8, 2021 (version 1)
  4. Version of Record published: June 25, 2021 (version 2)

Copyright

© 2021, Dehmelt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,078
    Page views
  • 121
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Florian Alexander Dehmelt
  2. Rebecca Meier
  3. Julian Hinz
  4. Takeshi Yoshimatsu
  5. Clara A Simacek
  6. Ruoyu Huang
  7. Kun Wang
  8. Tom Baden
  9. Aristides B Arrenberg
(2021)
Spherical arena reveals optokinetic response tuning to stimulus location, size, and frequency across entire visual field of larval zebrafish
eLife 10:e63355.
https://doi.org/10.7554/eLife.63355

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Bo Shen, Kenway Louie, Paul W Glimcher
    Research Article

    Inhibition is crucial for brain function, regulating network activity by balancing excitation and implementing gain control. Recent evidence suggests that beyond simply inhibiting excitatory activity, inhibitory neurons can also shape circuit function through disinhibition. While disinhibitory circuit motifs have been implicated in cognitive processes including learning, attentional selection, and input gating, the role of disinhibition is largely unexplored in the study of decision-making. Here, we show that disinhibition provides a simple circuit motif for fast, dynamic control of network state and function. This dynamic control allows a disinhibition-based decision model to reproduce both value normalization and winner-take-all dynamics, the two central features of neurobiological decision-making captured in separate existing models with distinct circuit motifs. In addition, the disinhibition model exhibits flexible attractor dynamics consistent with different forms of persistent activity seen in working memory. Fitting the model to empirical data shows it captures well both the neurophysiological dynamics of value coding and psychometric choice behavior. Furthermore, the biological basis of disinhibition provides a simple mechanism for flexible top-down control of the network states, enabling the circuit to capture diverse task-dependent neural dynamics. These results suggest a biologically plausible unifying mechanism for decision-making and emphasize the importance of local disinhibition in neural processing.

    1. Medicine
    2. Neuroscience
    Gen Li, Binshi Bo ... Xiaojie Duan
    Research Article

    The available treatments for depression have substantial limitations, including low response rates and substantial lag time before a response is achieved. We applied deep brain stimulation (DBS) to the lateral habenula (LHb) of two rat models of depression (Wistar Kyoto rats and lipopolysaccharide-treated rats) and observed an immediate (within seconds to minutes) alleviation of depressive-like symptoms with a high-response rate. Simultaneous functional MRI (fMRI) conducted on the same sets of depressive rats used in behavioral tests revealed DBS-induced activation of multiple regions in afferent and efferent circuitry of the LHb. The activation levels of brain regions connected to the medial LHb (M-LHb) were correlated with the extent of behavioral improvements. Rats with more medial stimulation sites in the LHb exhibited greater antidepressant effects than those with more lateral stimulation sites. These results indicated that the antidromic activation of the limbic system and orthodromic activation of the monoaminergic systems connected to the M-LHb played a critical role in the rapid antidepressant effects of LHb-DBS. This study indicates that M-LHb-DBS might act as a valuable, rapid-acting antidepressant therapeutic strategy for treatment-resistant depression and demonstrates the potential of using fMRI activation of specific brain regions as biomarkers to predict and evaluate antidepressant efficacy.