Optogenetic strategies for high-efficiency all-optical interrogation using blue light-sensitive opsins

  1. Angelo Forli
  2. Matteo Pisoni
  3. Yoav Printz
  4. Ofer Yizhar  Is a corresponding author
  5. Tommaso Fellin  Is a corresponding author
  1. Italian Institute of Technology, Italy
  2. Istituto Italiano di Tecnologia, Italy
  3. Weizmann Institute of Science, Israel

Abstract

All-optical methods for imaging and manipulating brain networks with high spatial resolution are fundamental to study how neuronal ensembles drive behavior. Stimulation of neuronal ensembles using holographic techniques requires high-sensitivity actuators to avoid photodamage and heating. Moreover, two-photon-excitable opsins should be insensitive to light at wavelengths used for imaging. To achieve this goal, we developed a novel soma-targeted variant of the large-conductance blue light-sensitive opsin CoChR (stCoChR). In the mouse cortex in vivo, we combined holographic two-photon stimulation of stCoChR with an amplified laser tuned at the opsin absorption peak and imaging of the red-shifted indicator jRCaMP1a. Compared to previously characterized blue light-sensitive soma-targeted opsins in vivo, stCoChR allowed neuronal stimulation with more than 10-fold lower average power and no spectral crosstalk. The combination of stCoChR, tuned amplified laser stimulation, and red-shifted functional indicators promises to be a powerful tool for large-scale interrogation of neural networks in the intact brain.

Data availability

We provide Source Data for the data plotted in all figures as Excel Source Data files.

Article and author information

Author details

  1. Angelo Forli

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Matteo Pisoni

    Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0480-5220
  3. Yoav Printz

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Ofer Yizhar

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    ofer.yizhar@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4228-1448
  5. Tommaso Fellin

    Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
    For correspondence
    tommaso.fellin@iit.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2718-7533

Funding

H2020 European Research Council (647725)

  • Tommaso Fellin

Candice Appleton Family Trust

  • Ofer Yizhar

H2020-RIA (DEEPER 101016787)

  • Ofer Yizhar

NIH Brain Initiative (U01 NS090576)

  • Tommaso Fellin

NIH Brain Initiative (U19 NS107464)

  • Tommaso Fellin

H2020-RIA (DEEPER 101016787)

  • Tommaso Fellin

H2020 European Research Council (819496)

  • Ofer Yizhar

Human Frontier Science Program

  • Ofer Yizhar

Brain and Behavior Research Foundation

  • Ofer Yizhar

Ilse Katz Institute for Material Sciences and Magnetic Resonance Research

  • Ofer Yizhar

Adelis Prize for Brain Research

  • Ofer Yizhar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Inna Slutsky, Tel Aviv University, Israel

Ethics

Animal experimentation: All experiments involving animals were approved by the IIT Animal Welfare Body, by theNational Council on Animal Care of the Italian Ministry of Health (authorization #34/2015-PR, #1084/2020-PR), and by the Institutional Animal Care and Use Committee at the Weizmann Institute of Science, and carried out in accordance with the guidelines established by the European Communities Council Directive.

Version history

  1. Received: September 22, 2020
  2. Accepted: May 24, 2021
  3. Accepted Manuscript published: May 25, 2021 (version 1)
  4. Version of Record published: June 4, 2021 (version 2)

Copyright

© 2021, Forli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,189
    views
  • 591
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Angelo Forli
  2. Matteo Pisoni
  3. Yoav Printz
  4. Ofer Yizhar
  5. Tommaso Fellin
(2021)
Optogenetic strategies for high-efficiency all-optical interrogation using blue light-sensitive opsins
eLife 10:e63359.
https://doi.org/10.7554/eLife.63359

Share this article

https://doi.org/10.7554/eLife.63359

Further reading

    1. Neuroscience
    Alina Tetereva, Narun Pat
    Research Article

    One well-known biomarker candidate that supposedly helps capture fluid cognition is Brain Age, or a predicted value based on machine-learning models built to predict chronological age from brain MRI. To formally evaluate the utility of Brain Age for capturing fluid cognition, we built 26 age-prediction models for Brain Age based on different combinations of MRI modalities, using the Human Connectome Project in Aging (n=504, 36–100 years old). First, based on commonality analyses, we found a large overlap between Brain Age and chronological age: Brain Age could uniquely add only around 1.6% in explaining variation in fluid cognition over and above chronological age. Second, the age-prediction models that performed better at predicting chronological age did NOT necessarily create better Brain Age for capturing fluid cognition over and above chronological age. Instead, better-performing age-prediction models created Brain Age that overlapped larger with chronological age, up to around 29% out of 32%, in explaining fluid cognition. Third, Brain Age missed around 11% of the total variation in fluid cognition that could have been explained by the brain variation. That is, directly predicting fluid cognition from brain MRI data (instead of relying on Brain Age and chronological age) could lead to around a 1/3-time improvement of the total variation explained. Accordingly, we demonstrated the limited utility of Brain Age as a biomarker for fluid cognition and made some suggestions to ensure the utility of Brain Age in explaining fluid cognition and other phenotypes of interest.

    1. Developmental Biology
    2. Neuroscience
    Jonathan AC Menzies, André Maia Chagas ... Claudio R Alonso
    Research Article

    Movement is a key feature of animal systems, yet its embryonic origins are not fully understood. Here, we investigate the genetic basis underlying the embryonic onset of movement in Drosophila focusing on the role played by small non-coding RNAs (microRNAs, miRNAs). To this end, we first develop a quantitative behavioural pipeline capable of tracking embryonic movement in large populations of fly embryos, and using this system, discover that the Drosophila miRNA miR-2b-1 plays a role in the emergence of movement. Through the combination of spectral analysis of embryonic motor patterns, cell sorting and RNA in situs, genetic reconstitution tests, and neural optical imaging we define that miR-2b-1 influences the emergence of embryonic movement by exerting actions in the developing nervous system. Furthermore, through the combination of bioinformatics coupled to genetic manipulation of miRNA expression and phenocopy tests we identify a previously uncharacterised (but evolutionarily conserved) chloride channel encoding gene – which we term Movement Modulator (Motor) – as a genetic target that mechanistically links miR-2b-1 to the onset of movement. Cell-specific genetic reconstitution of miR-2b-1 expression in a null miRNA mutant background, followed by behavioural assays and target gene analyses, suggest that miR-2b-1 affects the emergence of movement through effects in sensory elements of the embryonic circuitry, rather than in the motor domain. Our work thus reports the first miRNA system capable of regulating embryonic movement, suggesting that other miRNAs are likely to play a role in this key developmental process in Drosophila as well as in other species.