1. Neuroscience
Download icon

Optogenetic strategies for high-efficiency all-optical interrogation using blue light-sensitive opsins

  1. Angelo Forli
  2. Matteo Pisoni
  3. Yoav Printz
  4. Ofer Yizhar  Is a corresponding author
  5. Tommaso Fellin  Is a corresponding author
  1. Italian Institute of Technology, Italy
  2. Istituto Italiano di Tecnologia, Italy
  3. Weizmann Institute of Science, Israel
Tools and Resources
  • Cited 1
  • Views 2,261
  • Annotations
Cite this article as: eLife 2021;10:e63359 doi: 10.7554/eLife.63359

Abstract

All-optical methods for imaging and manipulating brain networks with high spatial resolution are fundamental to study how neuronal ensembles drive behavior. Stimulation of neuronal ensembles using holographic techniques requires high-sensitivity actuators to avoid photodamage and heating. Moreover, two-photon-excitable opsins should be insensitive to light at wavelengths used for imaging. To achieve this goal, we developed a novel soma-targeted variant of the large-conductance blue light-sensitive opsin CoChR (stCoChR). In the mouse cortex in vivo, we combined holographic two-photon stimulation of stCoChR with an amplified laser tuned at the opsin absorption peak and imaging of the red-shifted indicator jRCaMP1a. Compared to previously characterized blue light-sensitive soma-targeted opsins in vivo, stCoChR allowed neuronal stimulation with more than 10-fold lower average power and no spectral crosstalk. The combination of stCoChR, tuned amplified laser stimulation, and red-shifted functional indicators promises to be a powerful tool for large-scale interrogation of neural networks in the intact brain.

Data availability

We provide Source Data for the data plotted in all figures as Excel Source Data files.

Article and author information

Author details

  1. Angelo Forli

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Matteo Pisoni

    Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0480-5220
  3. Yoav Printz

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Ofer Yizhar

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    ofer.yizhar@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4228-1448
  5. Tommaso Fellin

    Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
    For correspondence
    tommaso.fellin@iit.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2718-7533

Funding

H2020 European Research Council (647725)

  • Tommaso Fellin

Candice Appleton Family Trust

  • Ofer Yizhar

H2020-RIA (DEEPER 101016787)

  • Ofer Yizhar

NIH Brain Initiative (U01 NS090576)

  • Tommaso Fellin

NIH Brain Initiative (U19 NS107464)

  • Tommaso Fellin

H2020-RIA (DEEPER 101016787)

  • Tommaso Fellin

H2020 European Research Council (819496)

  • Ofer Yizhar

Human Frontier Science Program

  • Ofer Yizhar

Brain and Behavior Research Foundation

  • Ofer Yizhar

Ilse Katz Institute for Material Sciences and Magnetic Resonance Research

  • Ofer Yizhar

Adelis Prize for Brain Research

  • Ofer Yizhar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments involving animals were approved by the IIT Animal Welfare Body, by theNational Council on Animal Care of the Italian Ministry of Health (authorization #34/2015-PR, #1084/2020-PR), and by the Institutional Animal Care and Use Committee at the Weizmann Institute of Science, and carried out in accordance with the guidelines established by the European Communities Council Directive.

Reviewing Editor

  1. Inna Slutsky, Tel Aviv University, Israel

Publication history

  1. Received: September 22, 2020
  2. Accepted: May 24, 2021
  3. Accepted Manuscript published: May 25, 2021 (version 1)
  4. Version of Record published: June 4, 2021 (version 2)

Copyright

© 2021, Forli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,261
    Page views
  • 360
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Zhong-Jiao Jiang et al.
    Research Article Updated

    Transient receptor potential melastatin 7 (TRPM7) contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in central nervous system (CNS) neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmissions from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.

    1. Neuroscience
    Renée S Koolschijn et al.
    Research Article Updated

    The brain has a remarkable capacity to acquire and store memories that can later be selectively recalled. These processes are supported by the hippocampus which is thought to index memory recall by reinstating information stored across distributed neocortical circuits. However, the mechanism that supports this interaction remains unclear. Here, in humans, we show that recall of a visual cue from a paired associate is accompanied by a transient increase in the ratio between glutamate and GABA in visual cortex. Moreover, these excitatory-inhibitory fluctuations are predicted by activity in the hippocampus. These data suggest the hippocampus gates memory recall by indexing information stored across neocortical circuits using a disinhibitory mechanism.