Calcium signaling through a Transient Receptor Channel is important for Toxoplasma gondii growth

  1. Karla Marie Marquez-Nogueras
  2. Myriam Andrea Hortua Triana
  3. Nathan M Chasen
  4. Ivana Y Kuo
  5. Silvia NJ Moreno  Is a corresponding author
  1. University of Georgia, United States
  2. Stritch School of Medicine, Loyola University, United States

Abstract

Transient Receptor Potential (TRP) channels participate in calcium ion (Ca2+) influx and intracellular Ca2+ release. TRP channels have not been studied in Toxoplasma gondii or any other apicomplexan parasite. In this work we characterize TgGT1_310560, a protein predicted to possess a TRP domain (TgTRPPL-2) and determined its role in Ca2+ signaling in T. gondii, the causative agent of toxoplasmosis. TgTRPPL-2 localizes to the plasma membrane and the endoplasmic reticulum (ER) of T. gondii. The ΔTgTRPPL-2 mutant was defective in growth and cytosolic Ca2+ influx from both extracellular and intracellular sources. Heterologous expression of TgTRPPL-2 in HEK-3KO cells allowed its functional characterization. Patching of ER-nuclear membranes demonstrates that TgTRPPL-2 is a non-selective cation channel that conducts Ca2+. Pharmacological blockers of TgTRPPL-2 inhibit Ca2+ influx and parasite growth. This is the first report of an apicomplexan ion channel that conducts Ca2+ and may initiate a Ca2+ signaling cascade that leads to the stimulation of motility, invasion and egress. TgTRPPL-2 is a potential target for combating Toxoplasmosis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Karla Marie Marquez-Nogueras

    Microbiology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Myriam Andrea Hortua Triana

    Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nathan M Chasen

    Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ivana Y Kuo

    Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Silvia NJ Moreno

    Cellular Biology, University of Georgia, Athens, United States
    For correspondence
    smoreno@uga.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2041-6295

Funding

National Institutes of Health (AI154931)

  • Silvia NJ Moreno

National Institutes of Health (AI128356)

  • Silvia NJ Moreno

National Institutes of Health (T32AI060546)

  • Karla Marie Marquez-Nogueras

National Institutes of Health (DK101585)

  • Ivana Y Kuo

The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Marquez-Nogueras et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,555
    views
  • 273
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karla Marie Marquez-Nogueras
  2. Myriam Andrea Hortua Triana
  3. Nathan M Chasen
  4. Ivana Y Kuo
  5. Silvia NJ Moreno
(2021)
Calcium signaling through a Transient Receptor Channel is important for Toxoplasma gondii growth
eLife 10:e63417.
https://doi.org/10.7554/eLife.63417

Share this article

https://doi.org/10.7554/eLife.63417

Further reading

    1. Ecology
    2. Microbiology and Infectious Disease
    Tom Clegg, Samraat Pawar
    Research Article Updated

    Predicting how species diversity changes along environmental gradients is an enduring problem in ecology. In microbes, current theories tend to invoke energy availability and enzyme kinetics as the main drivers of temperature-richness relationships. Here, we derive a general empirically-grounded theory that can explain this phenomenon by linking microbial species richness in competitive communities to variation in the temperature-dependence of their interaction and growth rates. Specifically, the shape of the microbial community temperature-richness relationship depends on how rapidly the strength of effective competition between species pairs changes with temperature relative to the variance of their growth rates. Furthermore, it predicts that a thermal specialist-generalist tradeoff in growth rates alters coexistence by shifting this balance, causing richness to peak at relatively higher temperatures. Finally, we show that the observed patterns of variation in thermal performance curves of metabolic traits across extant bacterial taxa is indeed sufficient to generate the variety of community-level temperature-richness responses observed in the real world. Our results provide a new and general mechanism that can help explain temperature-diversity gradients in microbial communities, and provide a quantitative framework for interlinking variation in the thermal physiology of microbial species to their community-level diversity.

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Clément Mazeaud, Stefan Pfister ... Laurent Chatel-Chaix
    Research Article

    Zika virus (ZIKV) infection causes significant human disease that, with no approved treatment or vaccine, constitutes a major public health concern. Its life cycle entirely relies on the cytoplasmic fate of the viral RNA genome (vRNA) through a fine-tuned equilibrium between vRNA translation, replication, and packaging into new virions, all within virus-induced replication organelles (vROs). In this study, with an RNA interference (RNAi) mini-screening and subsequent functional characterization, we have identified insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a new host dependency factor that regulates vRNA synthesis. In infected cells, IGF2BP2 associates with viral NS5 polymerase and redistributes to the perinuclear viral replication compartment. Combined fluorescence in situ hybridization-based confocal imaging, in vitro binding assays, and immunoprecipitation coupled to RT-qPCR showed that IGF2BP2 directly interacts with ZIKV vRNA 3’ nontranslated region. Using ZIKV sub-genomic replicons and a replication-independent vRO induction system, we demonstrated that IGF2BP2 knockdown impairs de novo vRO biogenesis and, consistently, vRNA synthesis. Finally, the analysis of immunopurified IGF2BP2 complex using quantitative mass spectrometry and RT-qPCR revealed that ZIKV infection alters the protein and RNA interactomes of IGF2BP2. Altogether, our data support that ZIKV hijacks and remodels the IGF2BP2 ribonucleoprotein complex to regulate vRO biogenesis and vRNA neosynthesis.