Temporal evolution of single-cell transcriptomes of Drosophila olfactory projection neurons

  1. Qijing Xie
  2. Maria Brbic
  3. Felix Horns
  4. Sai Saroja Kolluru
  5. Robert C Jones
  6. Jiefu Li
  7. Anay R Reddy
  8. Anthony Xie
  9. Sayeh Kohani
  10. Zhuoran Li
  11. Colleen N McLaughlin
  12. Tongchao Li
  13. Chuanyun Xu
  14. David Vacek
  15. David J Luginbuhl
  16. Jure Leskovec
  17. Stephen R Quake  Is a corresponding author
  18. Liqun Luo  Is a corresponding author
  19. Hongjie Li
  1. Howard Hughes Medical Institute, Stanford University, United States
  2. Stanford University, United States
  3. Chan Zuckerberg Biohub, United States

Abstract

Neurons undergo substantial morphological and functional changes during development to form precise synaptic connections and acquire specific physiological properties. What are the underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21 transcriptomic clusters corresponding to 20 PN types and developed methods to match transcriptomic clusters representing the same PN type across development. We discovered that PN transcriptomes reflect unique biological processes unfolding at each stage—neurite growth and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, our work reveals principles of cellular diversity during brain development and provides a resource for future studies of neural development in PNs and other neuronal types.

Data availability

Raw sequencing reads and preprocessed sequence data have been deposited in GEO under accession code GSE161228.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Qijing Xie

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Maria Brbic

    Department of Computer Science, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Felix Horns

    Biophysics Graduate Program, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5872-5061
  4. Sai Saroja Kolluru

    Department of Bioengineering, Chan Zuckerberg Biohub, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert C Jones

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7235-9854
  6. Jiefu Li

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0062-4652
  7. Anay R Reddy

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Anthony Xie

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sayeh Kohani

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhuoran Li

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Colleen N McLaughlin

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Tongchao Li

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Chuanyun Xu

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. David Vacek

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. David J Luginbuhl

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Jure Leskovec

    Department of Computer Science, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Stephen R Quake

    Chan Zuckerberg Biohub, San Francisco, United States
    For correspondence
    steve@quake-lab.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1613-0809
  18. Liqun Luo

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    For correspondence
    lluo@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5467-9264
  19. Hongjie Li

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01 DC005982)

  • Liqun Luo

National Institutes of Health (1K99AG062746)

  • Hongjie Li

Howard Hughes Medical Institute

  • Liqun Luo

Stanford University (Graduate Student Fellowship)

  • Qijing Xie

Wu Tsai Neuroscience Institute at Stanford (Interdisciplinary postdoctoral scholar)

  • Hongjie Li

We Tsai Neuroscience Institute at Stanford (Neuro-omics program)

  • Liqun Luo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Xie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,849
    views
  • 610
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.63450

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.