Curcumin promotes AApoAII amyloidosis and peroxisome proliferation in mice by activating the PPARα signaling pathway

  1. Jian Dai  Is a corresponding author
  2. Ying Li
  3. Fuyuki Kametani
  4. Xiaoran Cui
  5. Yuichi Igarashi
  6. Jia Huo
  7. Hiroki Miyahara
  8. Masayuki Mori
  9. Keiichi Higuchi
  1. Shinshu University, Japan
  2. Tokyo Metropolitan Institute of Medical Science, Japan
  3. Shinshu University Graduate School of Medicine, Japan
  4. Third Hospital of Hebei Medical University, China

Abstract

Curcumin is a polyphenol compound that exhibits multiple physiological activities. To elucidate the mechanisms by which curcumin affects systemic amyloidosis, we investigated amyloid deposition and molecular changes in a mouse model of amyloid apolipoprotein A-II (AApoAII) amyloidosis, in which mice were fed a curcumin-supplemented diet. Curcumin supplementation for 12 weeks significantly increased AApoAII amyloid deposition relative to controls, especially in the liver and spleen. Liver weights and plasma ApoA-II and high-density lipoprotein concentrations were significantly elevated in curcumin-supplemented groups. RNA-sequence analysis revealed that curcumin intake affected hepatic lipid metabolism via the peroxisome proliferator-activated receptor (PPAR) pathway, especially PPARα activation, resulting in increased Apoa2 mRNA expression. The increase in liver weights was due to activation of PPARα and peroxisome proliferation. Taken together, these results demonstrate that curcumin is a PPARα activator and may affect expression levels of proteins involved in amyloid deposition to influence amyloidosis and metabolism in a complex manner.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jian Dai

    Aging Biology, Shinshu University, Matsumoto, Japan
    For correspondence
    daijian3@shinshu-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8097-6756
  2. Ying Li

    Aging Biology, Shinshu University, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Fuyuki Kametani

    Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaoran Cui

    Shinshu University Graduate School of Medicine, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yuichi Igarashi

    Shinshu University Graduate School of Medicine, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Jia Huo

    Third Hospital of Hebei Medical University, Shijiazhuang, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Hiroki Miyahara

    Aging Biology, Shinshu University, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Masayuki Mori

    Aging Biology, Shinshu University, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Keiichi Higuchi

    Aging Biology, Shinshu University, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ministry of Education, Culture, Sports, Science and Technology (17H04063)

  • Jian Dai

Ministry of Education, Culture, Sports, Science and Technology (26670152)

  • Jian Dai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rudolph E Tanzi, Harvard University, United States

Ethics

Animal experimentation: All experiments were approved by the Committee for Animal Experiments of Shinshu University (Approval No. 280086). Mice were sacrificed by cardiac puncture under deep sevoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: September 28, 2020
  2. Accepted: January 10, 2021
  3. Accepted Manuscript published: January 26, 2021 (version 1)
  4. Version of Record published: February 12, 2021 (version 2)

Copyright

© 2021, Dai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,611
    views
  • 267
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jian Dai
  2. Ying Li
  3. Fuyuki Kametani
  4. Xiaoran Cui
  5. Yuichi Igarashi
  6. Jia Huo
  7. Hiroki Miyahara
  8. Masayuki Mori
  9. Keiichi Higuchi
(2021)
Curcumin promotes AApoAII amyloidosis and peroxisome proliferation in mice by activating the PPARα signaling pathway
eLife 10:e63538.
https://doi.org/10.7554/eLife.63538

Share this article

https://doi.org/10.7554/eLife.63538

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.