Curcumin promotes AApoAII amyloidosis and peroxisome proliferation in mice by activating the PPARα signaling pathway

  1. Jian Dai  Is a corresponding author
  2. Ying Li
  3. Fuyuki Kametani
  4. Xiaoran Cui
  5. Yuichi Igarashi
  6. Jia Huo
  7. Hiroki Miyahara
  8. Masayuki Mori
  9. Keiichi Higuchi
  1. Shinshu University, Japan
  2. Tokyo Metropolitan Institute of Medical Science, Japan
  3. Shinshu University Graduate School of Medicine, Japan
  4. Third Hospital of Hebei Medical University, China

Abstract

Curcumin is a polyphenol compound that exhibits multiple physiological activities. To elucidate the mechanisms by which curcumin affects systemic amyloidosis, we investigated amyloid deposition and molecular changes in a mouse model of amyloid apolipoprotein A-II (AApoAII) amyloidosis, in which mice were fed a curcumin-supplemented diet. Curcumin supplementation for 12 weeks significantly increased AApoAII amyloid deposition relative to controls, especially in the liver and spleen. Liver weights and plasma ApoA-II and high-density lipoprotein concentrations were significantly elevated in curcumin-supplemented groups. RNA-sequence analysis revealed that curcumin intake affected hepatic lipid metabolism via the peroxisome proliferator-activated receptor (PPAR) pathway, especially PPARα activation, resulting in increased Apoa2 mRNA expression. The increase in liver weights was due to activation of PPARα and peroxisome proliferation. Taken together, these results demonstrate that curcumin is a PPARα activator and may affect expression levels of proteins involved in amyloid deposition to influence amyloidosis and metabolism in a complex manner.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jian Dai

    Aging Biology, Shinshu University, Matsumoto, Japan
    For correspondence
    daijian3@shinshu-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8097-6756
  2. Ying Li

    Aging Biology, Shinshu University, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Fuyuki Kametani

    Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaoran Cui

    Shinshu University Graduate School of Medicine, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yuichi Igarashi

    Shinshu University Graduate School of Medicine, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Jia Huo

    Third Hospital of Hebei Medical University, Shijiazhuang, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Hiroki Miyahara

    Aging Biology, Shinshu University, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Masayuki Mori

    Aging Biology, Shinshu University, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Keiichi Higuchi

    Aging Biology, Shinshu University, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ministry of Education, Culture, Sports, Science and Technology (17H04063)

  • Jian Dai

Ministry of Education, Culture, Sports, Science and Technology (26670152)

  • Jian Dai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the Committee for Animal Experiments of Shinshu University (Approval No. 280086). Mice were sacrificed by cardiac puncture under deep sevoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2021, Dai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,661
    views
  • 280
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jian Dai
  2. Ying Li
  3. Fuyuki Kametani
  4. Xiaoran Cui
  5. Yuichi Igarashi
  6. Jia Huo
  7. Hiroki Miyahara
  8. Masayuki Mori
  9. Keiichi Higuchi
(2021)
Curcumin promotes AApoAII amyloidosis and peroxisome proliferation in mice by activating the PPARα signaling pathway
eLife 10:e63538.
https://doi.org/10.7554/eLife.63538

Share this article

https://doi.org/10.7554/eLife.63538

Further reading

    1. Biochemistry and Chemical Biology
    Marius Landau, Sherif Elsabbagh ... Joachim E Schultz
    Research Article

    The biosynthesis of cyclic 3′,5′-adenosine monophosphate (cAMP) by mammalian membrane-bound adenylyl cyclases (mACs) is predominantly regulated by G-protein-coupled receptors (GPCRs). Up to now the two hexahelical transmembrane domains of mACs were considered to fix the enzyme to membranes. Here, we show that the transmembrane domains serve in addition as signal receptors and transmitters of lipid signals that control Gsα-stimulated mAC activities. We identify aliphatic fatty acids and anandamide as receptor ligands of mAC isoforms 1–7 and 9. The ligands enhance (mAC isoforms 2, 3, 7, and 9) or attenuate (isoforms 1, 4, 5, and 6) Gsα-stimulated mAC activities in vitro and in vivo. Substitution of the stimulatory membrane receptor of mAC3 by the inhibitory receptor of mAC5 results in a ligand inhibited mAC5–mAC3 chimera. Thus, we discovered a new class of membrane receptors in which two signaling modalities are at a crossing, direct tonic lipid and indirect phasic GPCR–Gsα signaling regulating the biosynthesis of cAMP.

    1. Biochemistry and Chemical Biology
    Shraddha KC, Kenny H Nguyen ... Thomas C Boothby
    Research Article

    The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins, combined with the exposure of their residues, accounts for this sensitivity. One context in which IDPs play important roles that are concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat-soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet the mechanisms underlying this synergy differ between IDP families.