Asprosin neutralizing antibodies as a treatment for metabolic syndrome

  1. Ila Mishra
  2. Clemens Duerrschmid
  3. Zhiqiang Ku
  4. Yang He
  5. Wei Xie
  6. Elizabeth Sabath Silva
  7. Jennifer Hoffman
  8. Wei Xin
  9. Ningyan Zhang
  10. Yong Xu
  11. Zhiqiang An
  12. Atul R Chopra  Is a corresponding author
  1. Case Western Reserve University, United States
  2. University of Texas Health Science Center at Houston, United States
  3. Baylor College of Medicine, United States
  4. Case Western Reserve University,, United States
  5. Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, United States
  6. Brown Foundation Institute of Molecular Medicine, United States

Abstract

Background: Recently, we discovered a new glucogenic and centrally-acting orexigenic hormone – asprosin. Asprosin is elevated in metabolic syndrome (MS) patients, and its genetic loss results in reduced appetite, leanness and blood glucose burden, leading to protection from MS.

Methods: We generated three independent monoclonal antibodies (mAbs) that recognize unique asprosin epitopes and investigated their preclinical efficacy and tolerability in the treatment of MS.

Results: Anti-asprosin mAbs from three distinct species lowered appetite and body weight, and reduced blood glucose in a dose-dependent and epitope-agnostic fashion in three independent MS mouse models, with an IC50 of ~1.5 mg/kg. The mAbs displayed a half-life of over 3 days in vivo, with equilibrium dissociation-constants in picomolar to low nanomolar range.

Conclusions: We demonstrate that anti-asprosin mAbs are dual-effect pharmacologic therapy that targets two key pillars of MS – over-nutrition and hyperglycemia. This evidence paves the way for further development towards an investigational new drug application and subsequent human trials for treatment of MS, a defining physical ailment of our time.

Funding: DK118290 and DK125403 (R01; National Institute of Diabetes and Digestive and Kidney Diseases), DK102529 (K08; National Institute of Diabetes and Digestive and Kidney Diseases), Caroline Wiess Law Scholarship (Baylor College of Medicine, Harrington Investigatorship (Harrington Discovery Institute at University Hospitals, Cleveland); Chao Physician Scientists Award (Baylor College of Medicine); RP150551 and RP190561 (Cancer Prevention and Research Institute of Texas; CPRIT)

Data availability

All data analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Ila Mishra

    Harrington Discovery Institute, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  2. Clemens Duerrschmid

    Harrington Discovery Institute, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  3. Zhiqiang Ku

    Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, United States
    Competing interests
    No competing interests declared.
  4. Yang He

    Department of Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  5. Wei Xie

    Harrington Discovery Institute, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  6. Elizabeth Sabath Silva

    Harrington Discovery Institute, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  7. Jennifer Hoffman

    Harrington Discovery Institute, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  8. Wei Xin

    Department of Pathology, Case Western Reserve University,, Cleveland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0987-0443
  9. Ningyan Zhang

    Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, Houston, United States
    Competing interests
    No competing interests declared.
  10. Yong Xu

    Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  11. Zhiqiang An

    University of Texas Health Science Center at Houston, Brown Foundation Institute of Molecular Medicine, Houston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9309-2335
  12. Atul R Chopra

    Harrington Discovery Institute, Case Western Reserve University, Cleveland, United States
    For correspondence
    atul.chopra@case.edu
    Competing interests
    Atul R Chopra, A.R.C. is a cofounder and director of Vizigen, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1304-3777

Funding

Cancer Prevention and Research Institute of Texas (RP150551 and RP190561)

  • Atul R Chopra

Welch Foundation (AU-0042-20030616 and I-1834)

  • Zhiqiang An

National Institute of Diabetes and Digestive and Kidney Diseases (DK102529,DK118290)

  • Atul R Chopra

Harrington Discovery Institute

  • Atul R Chopra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2018-0042) of the Case Western Reserve University. The protocol was approved by the Committee on the Ethics of Animal Experiments of Case Western Reserve University.

Copyright

© 2021, Mishra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,691
    views
  • 499
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ila Mishra
  2. Clemens Duerrschmid
  3. Zhiqiang Ku
  4. Yang He
  5. Wei Xie
  6. Elizabeth Sabath Silva
  7. Jennifer Hoffman
  8. Wei Xin
  9. Ningyan Zhang
  10. Yong Xu
  11. Zhiqiang An
  12. Atul R Chopra
(2021)
Asprosin neutralizing antibodies as a treatment for metabolic syndrome
eLife 10:e63784.
https://doi.org/10.7554/eLife.63784

Share this article

https://doi.org/10.7554/eLife.63784

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Haiyi Fei, Xiaowen Lu ... Lingling Jiang
    Research Article

    Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RACCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3CCR7+HeliosCD127CD8+) and pro-inflam Macs (CD206CD163CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206 pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1–IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal–fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.

    1. Medicine
    Gabriel O Heckerman, Eileen Tzng ... Adrienne Mueller
    Research Article

    Background: Several fields have described low reproducibility of scientific research and poor accessibility in research reporting practices. Although previous reports have investigated accessible reporting practices that lead to reproducible research in other fields, to date, no study has explored the extent of accessible and reproducible research practices in cardiovascular science literature.

    Methods: To study accessibility and reproducibility in cardiovascular research reporting, we screened 639 randomly selected articles published in 2019 in three top cardiovascular science publications: Circulation, the European Heart Journal, and the Journal of the American College of Cardiology (JACC). Of those 639 articles, 393 were empirical research articles. We screened each paper for accessible and reproducible research practices using a set of accessibility criteria including protocol, materials, data, and analysis script availability, as well as accessibility of the publication itself. We also quantified the consistency of open research practices within and across cardiovascular study types and journal formats.

    Results: We identified that fewer than 2% of cardiovascular research publications provide sufficient resources (materials, methods, data, and analysis scripts) to fully reproduce their studies. Of the 639 articles screened, 393 were empirical research studies for which reproducibility could be assessed using our protocol, as opposed to commentaries or reviews. After calculating an accessibility score as a measure of the extent to which an article makes its resources available, we also showed that the level of accessibility varies across study types with a score of 0.08 for Case Studies or Case Series and 0.39 for Clinical Trials (p = 5.500E-5) and across journals (0.19 through 0.34, p = 1.230E-2). We further showed that there are significant differences in which study types share which resources.

    Conclusion: Although the degree to which reproducible reporting practices are present in publications varies significantly across journals and study types, current cardiovascular science reports frequently do not provide sufficient materials, protocols, data, or analysis information to reproduce a study. In the future, having higher standards of accessibility mandated by either journals or funding bodies will help increase the reproducibility of cardiovascular research.

    Funding: Authors Gabriel Heckerman, Arely Campos-Melendez, and Chisomaga Ekwueme were supported by an NIH R25 grant from the National Heart, Lung and Blood Institute (R25HL147666). Eileen Tzng was supported by an AHA Institutional Training Award fellowship (18UFEL33960207).