Incomplete removal of extracellular glutamate controls synaptic transmission and integration at a cerebellar synapse

  1. Timothy S Balmer
  2. Carolina Borges-Merjane
  3. Laurence O Trussell  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Institute of Science and Technology, Austria

Abstract

Synapses of glutamatergic mossy fibers onto cerebellar unipolar brush cells (UBCs) generate slow excitatory (ON) or inhibitory (OFF) postsynaptic responses dependent on the complement of glutamate receptors expressed on the UBC's large dendritic brush. Using mouse brain slice recording and computational modeling of synaptic transmission, we found that substantial glutamate is maintained in the UBC synaptic cleft, sufficient to modify spontaneous firing in OFF UBCs and tonically desensitize AMPARs of ON UBCs. The source of this ambient glutamate was spontaneous, spike-independent exocytosis from the mossy fiber terminal, and its level was dependent on activity of glutamate transporters EAAT1-2. Increasing levels of ambient glutamate shifted the polarity of evoked synaptic responses in ON UBCs and altered the phase of responses to in vivo-like synaptic activity. Unlike classical fast synapses, receptors at the UBC synapse are virtually always exposed to a significant level of glutamate, which varies in a graded manner during transmission.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Timothy S Balmer

    Vollum Institute and Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Carolina Borges-Merjane

    Cellular Neuroscience, Institute of Science and Technology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Laurence O Trussell

    Vollum Institute; Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    For correspondence
    trussell@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1171-2356

Funding

National Institute of Neurological Disorders and Stroke (NS028901)

  • Laurence O Trussell

National Institute of Neurological Disorders and Stroke (NS116798)

  • Laurence O Trussell

National Institute on Deafness and Other Communication Disorders (DC004450)

  • Laurence O Trussell

National Institute on Deafness and Other Communication Disorders (DC016905)

  • Timothy S Balmer

National Institute on Deafness and Other Communication Disorders (DC014878)

  • Timothy S Balmer

National Institute on Deafness and Other Communication Disorders (DC012454)

  • Carolina Borges-Merjane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed under the approval of the institutional animal care and use committee (IACUC) of Oregon Health and Science University, assurance #A3304-01.

Copyright

© 2021, Balmer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,807
    views
  • 243
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Timothy S Balmer
  2. Carolina Borges-Merjane
  3. Laurence O Trussell
(2021)
Incomplete removal of extracellular glutamate controls synaptic transmission and integration at a cerebellar synapse
eLife 10:e63819.
https://doi.org/10.7554/eLife.63819

Share this article

https://doi.org/10.7554/eLife.63819