Incomplete removal of extracellular glutamate controls synaptic transmission and integration at a cerebellar synapse

  1. Timothy S Balmer
  2. Carolina Borges-Merjane
  3. Laurence O Trussell  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Institute of Science and Technology, Austria

Abstract

Synapses of glutamatergic mossy fibers onto cerebellar unipolar brush cells (UBCs) generate slow excitatory (ON) or inhibitory (OFF) postsynaptic responses dependent on the complement of glutamate receptors expressed on the UBC's large dendritic brush. Using mouse brain slice recording and computational modeling of synaptic transmission, we found that substantial glutamate is maintained in the UBC synaptic cleft, sufficient to modify spontaneous firing in OFF UBCs and tonically desensitize AMPARs of ON UBCs. The source of this ambient glutamate was spontaneous, spike-independent exocytosis from the mossy fiber terminal, and its level was dependent on activity of glutamate transporters EAAT1-2. Increasing levels of ambient glutamate shifted the polarity of evoked synaptic responses in ON UBCs and altered the phase of responses to in vivo-like synaptic activity. Unlike classical fast synapses, receptors at the UBC synapse are virtually always exposed to a significant level of glutamate, which varies in a graded manner during transmission.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Timothy S Balmer

    Vollum Institute and Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Carolina Borges-Merjane

    Cellular Neuroscience, Institute of Science and Technology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Laurence O Trussell

    Vollum Institute; Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    For correspondence
    trussell@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1171-2356

Funding

National Institute of Neurological Disorders and Stroke (NS028901)

  • Laurence O Trussell

National Institute of Neurological Disorders and Stroke (NS116798)

  • Laurence O Trussell

National Institute on Deafness and Other Communication Disorders (DC004450)

  • Laurence O Trussell

National Institute on Deafness and Other Communication Disorders (DC016905)

  • Timothy S Balmer

National Institute on Deafness and Other Communication Disorders (DC014878)

  • Timothy S Balmer

National Institute on Deafness and Other Communication Disorders (DC012454)

  • Carolina Borges-Merjane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Katalin Toth, University of Ottawa, Canada

Ethics

Animal experimentation: All experiments were performed under the approval of the institutional animal care and use committee (IACUC) of Oregon Health and Science University, assurance #A3304-01.

Version history

  1. Received: October 8, 2020
  2. Accepted: February 19, 2021
  3. Accepted Manuscript published: February 22, 2021 (version 1)
  4. Version of Record published: March 5, 2021 (version 2)

Copyright

© 2021, Balmer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,615
    views
  • 229
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Timothy S Balmer
  2. Carolina Borges-Merjane
  3. Laurence O Trussell
(2021)
Incomplete removal of extracellular glutamate controls synaptic transmission and integration at a cerebellar synapse
eLife 10:e63819.
https://doi.org/10.7554/eLife.63819

Share this article

https://doi.org/10.7554/eLife.63819

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.