Incomplete removal of extracellular glutamate controls synaptic transmission and integration at a cerebellar synapse

  1. Timothy S Balmer
  2. Carolina Borges-Merjane
  3. Laurence O Trussell  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Institute of Science and Technology, Austria

Abstract

Synapses of glutamatergic mossy fibers onto cerebellar unipolar brush cells (UBCs) generate slow excitatory (ON) or inhibitory (OFF) postsynaptic responses dependent on the complement of glutamate receptors expressed on the UBC's large dendritic brush. Using mouse brain slice recording and computational modeling of synaptic transmission, we found that substantial glutamate is maintained in the UBC synaptic cleft, sufficient to modify spontaneous firing in OFF UBCs and tonically desensitize AMPARs of ON UBCs. The source of this ambient glutamate was spontaneous, spike-independent exocytosis from the mossy fiber terminal, and its level was dependent on activity of glutamate transporters EAAT1-2. Increasing levels of ambient glutamate shifted the polarity of evoked synaptic responses in ON UBCs and altered the phase of responses to in vivo-like synaptic activity. Unlike classical fast synapses, receptors at the UBC synapse are virtually always exposed to a significant level of glutamate, which varies in a graded manner during transmission.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Timothy S Balmer

    Vollum Institute and Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Carolina Borges-Merjane

    Cellular Neuroscience, Institute of Science and Technology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Laurence O Trussell

    Vollum Institute; Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    For correspondence
    trussell@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1171-2356

Funding

National Institute of Neurological Disorders and Stroke (NS028901)

  • Laurence O Trussell

National Institute of Neurological Disorders and Stroke (NS116798)

  • Laurence O Trussell

National Institute on Deafness and Other Communication Disorders (DC004450)

  • Laurence O Trussell

National Institute on Deafness and Other Communication Disorders (DC016905)

  • Timothy S Balmer

National Institute on Deafness and Other Communication Disorders (DC014878)

  • Timothy S Balmer

National Institute on Deafness and Other Communication Disorders (DC012454)

  • Carolina Borges-Merjane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Katalin Toth, University of Ottawa, Canada

Ethics

Animal experimentation: All experiments were performed under the approval of the institutional animal care and use committee (IACUC) of Oregon Health and Science University, assurance #A3304-01.

Version history

  1. Received: October 8, 2020
  2. Accepted: February 19, 2021
  3. Accepted Manuscript published: February 22, 2021 (version 1)
  4. Version of Record published: March 5, 2021 (version 2)

Copyright

© 2021, Balmer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,691
    views
  • 237
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Timothy S Balmer
  2. Carolina Borges-Merjane
  3. Laurence O Trussell
(2021)
Incomplete removal of extracellular glutamate controls synaptic transmission and integration at a cerebellar synapse
eLife 10:e63819.
https://doi.org/10.7554/eLife.63819

Share this article

https://doi.org/10.7554/eLife.63819

Further reading

    1. Neuroscience
    MinHyuk Lee, Se Hoon Park ... KyeongJin Kang
    Research Article

    Establishing transepithelial ion disparities is crucial for sensory functions in animals. In insect sensory organs called sensilla, a transepithelial potential, known as the sensillum potential (SP), arises through active ion transport across accessory cells, sensitizing receptor neurons such as mechanoreceptors and chemoreceptors. Because multiple receptor neurons are often co-housed in a sensillum and share SP, niche-prevalent overstimulation of single sensory neurons can compromise neighboring receptors by depleting SP. However, how such potential depletion is prevented to maintain sensory homeostasis remains unknown. Here, we find that the Ih-encoded hyperpolarization-activated cyclic nucleotide-gated (HCN) channel bolsters the activity of bitter-sensing gustatory receptor neurons (bGRNs), albeit acting in sweet-sensing GRNs (sGRNs). For this task, HCN maintains SP despite prolonged sGRN stimulation induced by the diet mimicking their sweet feeding niche, such as overripe fruit. We present evidence that Ih-dependent demarcation of sGRN excitability is implemented to throttle SP consumption, which may have facilitated adaptation to a sweetness-dominated environment. Thus, HCN expressed in sGRNs serves as a key component of a simple yet versatile peripheral coding that regulates bitterness for optimal food intake in two contrasting ways: sweet-resilient preservation of bitter aversion and the previously reported sweet-dependent suppression of bitter taste.

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.