Gut microbe-targeted choline trimethylamine lyase inhibition improves obesity via rewiring of host circadian rhythms

  1. Rebecca C Schugar
  2. Christy M Gliniak
  3. Lucas J Osborn
  4. William Massey
  5. Naseer Sangwan
  6. Anthony Horak
  7. Rakhee Banerjee
  8. Danny Orabi
  9. Robert N Helsley
  10. Amanda L Brown
  11. Amy Burrows
  12. Chelsea Finney
  13. Kevin K Fung
  14. Frederick M Allen
  15. Daniel Ferguson
  16. Anthony D Gromovsky
  17. Chase Neumann
  18. Kendall Cook
  19. Amy McMillan
  20. Jennifer A Buffa
  21. James T Anderson
  22. Margarete Mehrabian
  23. Maryam Goudarzi
  24. Belinda Willard
  25. Tytus D Mak
  26. Andrew R Armstrong
  27. Garth Swanson
  28. Ali Keshavarzian
  29. Jose Carlos Garcia-Garcia
  30. Zeneng Wang
  31. Aldons J Lusis
  32. Stanley L Hazen
  33. Jonathan Mark Brown  Is a corresponding author
  1. Cleveland Clinic Lerner College of Medicine, United States
  2. University of Texas Southwestern Medical Center, United States
  3. University of California, Los Angeles, United States
  4. National Institute of Standards and Technology (NIST), United States
  5. Rush University Medical Center, United States
  6. Procter and Gamble, United States

Abstract

Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this point obesity therapeutics have been targeted exclusively toward the human host. Here we show that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency (Lepob/ob). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not reduce food intake but is instead associated with alterations in the gut microbiome, improvement in glucose tolerance, and enhanced energy expenditure. We also show that gut microbial CutC inhibition is associated with reorganization of host circadian control of both phosphatidylcholine and energy metabolism. This study underscores the relationship between microbe and host metabolism and provides evidence that gut microbe-derived trimethylamine (TMA) is a key regulator of the host circadian clock. This work also demonstrates that gut microbe-targeted enzyme inhibitors have potential as anti-obesity therapeutics.

Data availability

RNA sequencing data has been deposited in GEO under accession code GSE157925Microbiome data were submitted to the European Nucleotide Archive under accession code PRJEB48232

Article and author information

Author details

  1. Rebecca C Schugar

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  2. Christy M Gliniak

    Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Lucas J Osborn

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  4. William Massey

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2087-6048
  5. Naseer Sangwan

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  6. Anthony Horak

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  7. Rakhee Banerjee

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  8. Danny Orabi

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  9. Robert N Helsley

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5000-3187
  10. Amanda L Brown

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  11. Amy Burrows

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  12. Chelsea Finney

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  13. Kevin K Fung

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  14. Frederick M Allen

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  15. Daniel Ferguson

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  16. Anthony D Gromovsky

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  17. Chase Neumann

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  18. Kendall Cook

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  19. Amy McMillan

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  20. Jennifer A Buffa

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    Jennifer A Buffa, reports being eligible to receive royalty payments for inventions or discoveries related to cardiovascular therapeutics from the Proctor & Gamble Co..
  21. James T Anderson

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  22. Margarete Mehrabian

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  23. Maryam Goudarzi

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  24. Belinda Willard

    Research Core Services, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  25. Tytus D Mak

    Mass Spectromety Data Center, National Institute of Standards and Technology (NIST), Gaithersburg, United States
    Competing interests
    No competing interests declared.
  26. Andrew R Armstrong

    Department of Internal Medicine, Rush University Medical Center, Chicago, United States
    Competing interests
    No competing interests declared.
  27. Garth Swanson

    Department of Internal Medicine, Rush University Medical Center, Chicago, United States
    Competing interests
    No competing interests declared.
  28. Ali Keshavarzian

    Department of Internal Medicine, Rush University Medical Center, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7969-3369
  29. Jose Carlos Garcia-Garcia

    Life Sciences Transformative Platform Technologies, Procter and Gamble, Cincinatti, United States
    Competing interests
    Jose Carlos Garcia-Garcia, Employee of Procter & Gamble Company.
  30. Zeneng Wang

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    Zeneng Wang, reports being named as co-inventor on pending and issued patents 20200121615 held by the Cleveland Clinic relating to cardiovascular diagnostics and therapeutics.Reports being a paid consultant for Procter & Gamble, having received research funds from Procter & Gamble, Roche Diagnostics, and being eligible to receive royalty payments for inventions or discoveries related to cardiovascular diagnostics or therapeutics from Cleveland Heart Lab and Procter & Gamble..
  31. Aldons J Lusis

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  32. Stanley L Hazen

    Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    Stanley L Hazen, reports being named as co-inventor on pending and issued patents 20200121615 held by the Cleveland Clinic relating to cardiovascular diagnostics and therapeutics.Reports being a paid consultant for Procter & Gamble, having received research funds from Procter & Gamble, Roche Diagnostics, and being eligible to receive royalty payments for inventions or discoveries related to cardiovascular diagnostics or therapeutics from Cleveland Heart Lab and Procter & Gamble..
  33. Jonathan Mark Brown

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    For correspondence
    brownm5@ccf.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2708-7487

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK120679)

  • Jonathan Mark Brown

National Heart, Lung, and Blood Institute (R01 HL130819)

  • Zeneng Wang

National Institute of Diabetes and Digestive and Kidney Diseases (F32 DK122623)

  • Christy M Gliniak

National Institute of Diabetes and Digestive and Kidney Diseases (T32 DK007307)

  • Christy M Gliniak

Leducq Transatlantic Network of Excellence awar (No grant number)

  • Stanley L Hazen

American Heart Association (17POST3285000)

  • Robert N Helsley

American Heart Association (15POST2535000)

  • Rebecca C Schugar

Clinical and Translational Science Collaborative of Cleveland, School of Medicine, Case Western Reserve University (4UL1TR000439)

  • Belinda Willard

Case Comprehensive Cancer Center, Case Western Reserve University (P30 CA043703)

  • Jonathan Mark Brown

National Heart, Lung, and Blood Institute (P01 HL146823)

  • Stanley L Hazen

National Institute on Alcohol Abuse and Alcoholism (P50 AA024333)

  • Jonathan Mark Brown

National Institute on Alcohol Abuse and Alcoholism (U01 AA026938)

  • Jonathan Mark Brown

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK130227)

  • Jonathan Mark Brown

National Cancer Institute (P50 CA150964)

  • Jonathan Mark Brown

National Heart, Lung, and Blood Institute (R01 HL103866)

  • Stanley L Hazen

National Heart, Lung, and Blood Institute (R01 HL147883)

  • Aldons J Lusis

National Heart, Lung, and Blood Institute (R01 HL144651)

  • Aldons J Lusis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were maintained in an Association for the Assessment and Accreditation of Laboratory Animal Care, International-approved animal facility, and all experimental protocols were approved by the Institutional Animal Care and use Committee of the Cleveland Clinic. (Approved IACUC protocol numbers 2015-1381, 2018-1941, and 00002499).

Copyright

© 2022, Schugar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,464
    views
  • 522
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca C Schugar
  2. Christy M Gliniak
  3. Lucas J Osborn
  4. William Massey
  5. Naseer Sangwan
  6. Anthony Horak
  7. Rakhee Banerjee
  8. Danny Orabi
  9. Robert N Helsley
  10. Amanda L Brown
  11. Amy Burrows
  12. Chelsea Finney
  13. Kevin K Fung
  14. Frederick M Allen
  15. Daniel Ferguson
  16. Anthony D Gromovsky
  17. Chase Neumann
  18. Kendall Cook
  19. Amy McMillan
  20. Jennifer A Buffa
  21. James T Anderson
  22. Margarete Mehrabian
  23. Maryam Goudarzi
  24. Belinda Willard
  25. Tytus D Mak
  26. Andrew R Armstrong
  27. Garth Swanson
  28. Ali Keshavarzian
  29. Jose Carlos Garcia-Garcia
  30. Zeneng Wang
  31. Aldons J Lusis
  32. Stanley L Hazen
  33. Jonathan Mark Brown
(2022)
Gut microbe-targeted choline trimethylamine lyase inhibition improves obesity via rewiring of host circadian rhythms
eLife 11:e63998.
https://doi.org/10.7554/eLife.63998

Share this article

https://doi.org/10.7554/eLife.63998

Further reading

    1. Medicine
    2. Neuroscience
    Emily M Adamic, Adam R Teed ... Sahib Khalsa
    Research Article

    Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals. In contrast, during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e. when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Furthermore, the dysgranular mid-insula may indeed be a ‘locus of disruption’ for psychiatric disorders.

    1. Medicine
    Yanling Huang, Haocong Mo ... Geyang Xu
    Research Article

    Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone secreted by intestinal L cells and vital for postprandial glycemic control. As open-type enteroendocrine cells, whether L cells can sense mechanical stimuli caused by chyme and thus regulate GLP-1 synthesis and secretion is unexplored. Molecular biology techniques revealed the expression of Piezo1 in intestinal L cells. Its level varied in different energy status and correlates with blood glucose and GLP-1 levels. Mice with L cell-specific loss of Piezo1 (Piezo1 IntL-CKO) exhibited impaired glucose tolerance, increased body weight, reduced GLP-1 production and decreased CaMKKβ/CaMKIV-mTORC1 signaling pathway under normal chow diet or high-fat diet. Activation of the intestinal Piezo1 by its agonist Yoda1 or intestinal bead implantation increased the synthesis and secretion of GLP-1, thus alleviated glucose intolerance in diet-induced-diabetic mice. Overexpression of Piezo1, Yoda1 treatment or stretching stimulated GLP-1 production and CaMKKβ/CaMKIV-mTORC1 signaling pathway, which could be abolished by knockdown or blockage of Piezo1 in primary cultured mouse L cells and STC-1 cells. These experimental results suggest a previously unknown regulatory mechanism for GLP-1 production in L cells, which could offer new insights into diabetes treatments.