Gut microbe-targeted choline trimethylamine lyase inhibition improves obesity via rewiring of host circadian rhythms

  1. Rebecca C Schugar
  2. Christy M Gliniak
  3. Lucas J Osborn
  4. William Massey
  5. Naseer Sangwan
  6. Anthony Horak
  7. Rakhee Banerjee
  8. Danny Orabi
  9. Robert N Helsley
  10. Amanda L Brown
  11. Amy Burrows
  12. Chelsea Finney
  13. Kevin K Fung
  14. Frederick M Allen
  15. Daniel Ferguson
  16. Anthony D Gromovsky
  17. Chase Neumann
  18. Kendall Cook
  19. Amy McMillan
  20. Jennifer A Buffa
  21. James T Anderson
  22. Margarete Mehrabian
  23. Maryam Goudarzi
  24. Belinda Willard
  25. Tytus D Mak
  26. Andrew R Armstrong
  27. Garth Swanson
  28. Ali Keshavarzian
  29. Jose Carlos Garcia-Garcia
  30. Zeneng Wang
  31. Aldons J Lusis
  32. Stanley L Hazen
  33. Jonathan Mark Brown  Is a corresponding author
  1. Cleveland Clinic Lerner College of Medicine, United States
  2. University of Texas Southwestern Medical Center, United States
  3. University of California, Los Angeles, United States
  4. National Institute of Standards and Technology (NIST), United States
  5. Rush University Medical Center, United States
  6. Procter and Gamble, United States

Abstract

Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this point obesity therapeutics have been targeted exclusively toward the human host. Here we show that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency (Lepob/ob). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not reduce food intake but is instead associated with alterations in the gut microbiome, improvement in glucose tolerance, and enhanced energy expenditure. We also show that gut microbial CutC inhibition is associated with reorganization of host circadian control of both phosphatidylcholine and energy metabolism. This study underscores the relationship between microbe and host metabolism and provides evidence that gut microbe-derived trimethylamine (TMA) is a key regulator of the host circadian clock. This work also demonstrates that gut microbe-targeted enzyme inhibitors have potential as anti-obesity therapeutics.

Data availability

RNA sequencing data has been deposited in GEO under accession code GSE157925Microbiome data were submitted to the European Nucleotide Archive under accession code PRJEB48232

Article and author information

Author details

  1. Rebecca C Schugar

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  2. Christy M Gliniak

    Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Lucas J Osborn

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  4. William Massey

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2087-6048
  5. Naseer Sangwan

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  6. Anthony Horak

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  7. Rakhee Banerjee

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  8. Danny Orabi

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  9. Robert N Helsley

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5000-3187
  10. Amanda L Brown

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  11. Amy Burrows

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  12. Chelsea Finney

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  13. Kevin K Fung

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  14. Frederick M Allen

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  15. Daniel Ferguson

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  16. Anthony D Gromovsky

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  17. Chase Neumann

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  18. Kendall Cook

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  19. Amy McMillan

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  20. Jennifer A Buffa

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    Jennifer A Buffa, reports being eligible to receive royalty payments for inventions or discoveries related to cardiovascular therapeutics from the Proctor & Gamble Co..
  21. James T Anderson

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  22. Margarete Mehrabian

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  23. Maryam Goudarzi

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  24. Belinda Willard

    Research Core Services, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    No competing interests declared.
  25. Tytus D Mak

    Mass Spectromety Data Center, National Institute of Standards and Technology (NIST), Gaithersburg, United States
    Competing interests
    No competing interests declared.
  26. Andrew R Armstrong

    Department of Internal Medicine, Rush University Medical Center, Chicago, United States
    Competing interests
    No competing interests declared.
  27. Garth Swanson

    Department of Internal Medicine, Rush University Medical Center, Chicago, United States
    Competing interests
    No competing interests declared.
  28. Ali Keshavarzian

    Department of Internal Medicine, Rush University Medical Center, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7969-3369
  29. Jose Carlos Garcia-Garcia

    Life Sciences Transformative Platform Technologies, Procter and Gamble, Cincinatti, United States
    Competing interests
    Jose Carlos Garcia-Garcia, Employee of Procter & Gamble Company.
  30. Zeneng Wang

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    Zeneng Wang, reports being named as co-inventor on pending and issued patents 20200121615 held by the Cleveland Clinic relating to cardiovascular diagnostics and therapeutics.Reports being a paid consultant for Procter & Gamble, having received research funds from Procter & Gamble, Roche Diagnostics, and being eligible to receive royalty payments for inventions or discoveries related to cardiovascular diagnostics or therapeutics from Cleveland Heart Lab and Procter & Gamble..
  31. Aldons J Lusis

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  32. Stanley L Hazen

    Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    Stanley L Hazen, reports being named as co-inventor on pending and issued patents 20200121615 held by the Cleveland Clinic relating to cardiovascular diagnostics and therapeutics.Reports being a paid consultant for Procter & Gamble, having received research funds from Procter & Gamble, Roche Diagnostics, and being eligible to receive royalty payments for inventions or discoveries related to cardiovascular diagnostics or therapeutics from Cleveland Heart Lab and Procter & Gamble..
  33. Jonathan Mark Brown

    Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    For correspondence
    brownm5@ccf.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2708-7487

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK120679)

  • Jonathan Mark Brown

National Heart, Lung, and Blood Institute (R01 HL130819)

  • Zeneng Wang

National Institute of Diabetes and Digestive and Kidney Diseases (F32 DK122623)

  • Christy M Gliniak

National Institute of Diabetes and Digestive and Kidney Diseases (T32 DK007307)

  • Christy M Gliniak

Leducq Transatlantic Network of Excellence awar (No grant number)

  • Stanley L Hazen

American Heart Association (17POST3285000)

  • Robert N Helsley

American Heart Association (15POST2535000)

  • Rebecca C Schugar

Clinical and Translational Science Collaborative of Cleveland, School of Medicine, Case Western Reserve University (4UL1TR000439)

  • Belinda Willard

Case Comprehensive Cancer Center, Case Western Reserve University (P30 CA043703)

  • Jonathan Mark Brown

National Heart, Lung, and Blood Institute (P01 HL146823)

  • Stanley L Hazen

National Institute on Alcohol Abuse and Alcoholism (P50 AA024333)

  • Jonathan Mark Brown

National Institute on Alcohol Abuse and Alcoholism (U01 AA026938)

  • Jonathan Mark Brown

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK130227)

  • Jonathan Mark Brown

National Cancer Institute (P50 CA150964)

  • Jonathan Mark Brown

National Heart, Lung, and Blood Institute (R01 HL103866)

  • Stanley L Hazen

National Heart, Lung, and Blood Institute (R01 HL147883)

  • Aldons J Lusis

National Heart, Lung, and Blood Institute (R01 HL144651)

  • Aldons J Lusis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were maintained in an Association for the Assessment and Accreditation of Laboratory Animal Care, International-approved animal facility, and all experimental protocols were approved by the Institutional Animal Care and use Committee of the Cleveland Clinic. (Approved IACUC protocol numbers 2015-1381, 2018-1941, and 00002499).

Copyright

© 2022, Schugar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,609
    views
  • 540
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca C Schugar
  2. Christy M Gliniak
  3. Lucas J Osborn
  4. William Massey
  5. Naseer Sangwan
  6. Anthony Horak
  7. Rakhee Banerjee
  8. Danny Orabi
  9. Robert N Helsley
  10. Amanda L Brown
  11. Amy Burrows
  12. Chelsea Finney
  13. Kevin K Fung
  14. Frederick M Allen
  15. Daniel Ferguson
  16. Anthony D Gromovsky
  17. Chase Neumann
  18. Kendall Cook
  19. Amy McMillan
  20. Jennifer A Buffa
  21. James T Anderson
  22. Margarete Mehrabian
  23. Maryam Goudarzi
  24. Belinda Willard
  25. Tytus D Mak
  26. Andrew R Armstrong
  27. Garth Swanson
  28. Ali Keshavarzian
  29. Jose Carlos Garcia-Garcia
  30. Zeneng Wang
  31. Aldons J Lusis
  32. Stanley L Hazen
  33. Jonathan Mark Brown
(2022)
Gut microbe-targeted choline trimethylamine lyase inhibition improves obesity via rewiring of host circadian rhythms
eLife 11:e63998.
https://doi.org/10.7554/eLife.63998

Share this article

https://doi.org/10.7554/eLife.63998

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    Kavidha Reddy, Guinevere Q Lee ... Thumbi Ndung'u
    Research Article

    Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are a barrier to cure efforts. Early antiretroviral therapy (ART) enables post-treatment viral control in some cases, but mechanisms remain unclear. We hypothesised that ART initiated before peak viremia impacts HIV-1 subtype C reservoirs. We studied 35 women at high risk of infection from Durban, South Africa, identified with hyperacute HIV by twice-weekly HIV-RNA testing. Participants included 11 starting ART at a median of 456 (297–1203) days post-onset of viremia (DPOV) and 24 at 1 (1–3) DPOV. Peripheral blood mononuclear cells (PBMCs) were used to measured total HIV-1 DNA by droplet digital PCR (ddPCR) and sequence viral reservoir genomes by full-length proviral sequencing (FLIP-seq). ART during hyperacute infection blunted peak viremia (p<0.0001), but contemporaneous total HIV-1 DNA did not differ (p=0.104). Over 1 year, a decline of total HIV-1 DNA was observed in early treated persons (p=0.0004), but not late treated. Among 697 viral genome sequences, the proviral genetic landscape differed between untreated, late treated, and early treated groups. Intact genomes after 1 year were higher in untreated (31%) versus late treated (14%) and early treated (0%). Treatment in both late and early infection caused more rapid decay of intact (13% and 51% per month) versus defective (2% and 35%) viral genomes. However, intact genomes persisted 1 year post chronic treatment but were undetectable with early ART. Early ART also reduced phylogenetic diversity of intact genomes and limited cytotoxic T lymphocyte immune escape variants in the reservoir. Overall, ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding but was associated with rapid intact viral genome decay, reduced genetic complexity, and limited immune escape, which may accelerate reservoir clearance in combination with other interventional strategies.

    1. Cancer Biology
    2. Medicine
    Patrick Brandt, Dawayne Whittington ... Rebekah L Layton
    Research Article

    A doctoral-level internship program was developed at the University of North Carolina at Chapel Hill with the intent to create customizable experiential learning opportunities for biomedical trainees to support career exploration, preparation, and transition into their postgraduate professional roles. We report the outcomes of this program over a 5-year period. During that 5-year period, 123 internships took place at over 70 partner sites, representing at least 20 academic, for-profit, and non-profit career paths in the life sciences. A major goal of the program was to enhance trainees’ skill development and expertise in careers of interest. The benefits of the internship program for interns, host/employer, and supervisor/principal investigator were assessed using a mixed-methods approach, including surveys with closed- and open-ended responses as well as focus group interviews. Balancing stakeholder interests is key to creating a sustainable program with widespread support; hence, the level of support from internship hosts and faculty members were the key metrics analyzed throughout. We hypothesized that once a successful internship program was implemented, faculty culture might shift to be more accepting of internships; indeed, the data quantifying faculty attitudes support this. Furthermore, host motivation and performance expectations of interns were compared with results achieved, and this data revealed both expected and surprising benefits to hosts. Data suggests a myriad of benefits for each stakeholder group, and themes are cataloged and discussed. Program outcomes, evaluation data, policies, resources, and best practices developed through the implementation of this program are shared to provide resources that facilitate the creation of similar internship programs at other institutions. Program development was initially spurred by National Institutes of Health pilot funding, thereafter, successfully transitioning from a grant-supported model, to an institutionally supported funding model to achieve long-term programmatic sustainability.