Multi-step vs. single-step resistance evolution under different drugs, pharmacokinetics and treatment regimens

  1. Claudia Igler  Is a corresponding author
  2. Jens Rolff
  3. Roland Regoes  Is a corresponding author
  1. ETH Zurich, Switzerland
  2. Freie Universität Berlin, Germany

Abstract

The success of antimicrobial treatment is threatened by the evolution of drug resistance. Population genetic models are an important tool in mitigating that threat. However, most such models consider resistance emergence via a single mutational step. Here, we assembled experimental evidence that drug resistance evolution follows two patterns: i) a single mutation, which provides a large resistance benefit, or ii) multiple mutations, each conferring a small benefit, which combine to yield high-level resistance. Using stochastic modeling we then investigated the consequences of these two patterns for treatment failure and population diversity under various treatments. We find that resistance evolution is substantially limited if more than two mutations are required and that the extent of this limitation depends on the combination of drug type and pharmacokinetic profile. Further, if multiple mutations are necessary, adaptive treatment, which only suppresses the bacterial population, delays treatment failure due to resistance for a longer time than aggressive treatment, which aims at eradication.

Data availability

All data and code generated or analysed during this study are included in the manuscript and supporting files. Source code has been provided for Figures 2-4, as well as S2-S17 in the form of an R package. Source data has been provided for Table 1, Figure 1B and S1.

The following previously published data sets were used
    1. Melnyk A
    2. Wong A
    3. Kassen R
    (2015) The fitness costs of antibiotic resistance mutations
    Dryad Digital Repository: http://doi.org/10.5061/dryad.5rc47.

Article and author information

Author details

  1. Claudia Igler

    Theoretical Biology, ETH Zurich, Zurich, Switzerland
    For correspondence
    claudia.igler@env.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7777-546X
  2. Jens Rolff

    Institute for Biology, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1529-5409
  3. Roland Regoes

    Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
    For correspondence
    roland.regoes@env.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8319-5293

Funding

Volkswagen Foundation (96517)

  • Claudia Igler
  • Jens Rolff
  • Roland Regoes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Igler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,710
    views
  • 517
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claudia Igler
  2. Jens Rolff
  3. Roland Regoes
(2021)
Multi-step vs. single-step resistance evolution under different drugs, pharmacokinetics and treatment regimens
eLife 10:e64116.
https://doi.org/10.7554/eLife.64116

Share this article

https://doi.org/10.7554/eLife.64116

Further reading

    1. Evolutionary Biology
    Silas Tittes, Anne Lorant ... Jeffrey Ross-Ibarra
    Research Article

    What is the genetic architecture of local adaptation and what is the geographic scale over which it operates? We investigated patterns of local and convergent adaptation in five sympatric population pairs of traditionally cultivated maize and its wild relative teosinte (Zea mays subsp. parviglumis). We found that signatures of local adaptation based on the inference of adaptive fixations and selective sweeps are frequently exclusive to individual populations, more so in teosinte compared to maize. However, for both maize and teosinte, selective sweeps are also frequently shared by several populations, and often between subspecies. We were further able to infer that selective sweeps were shared among populations most often via migration, though sharing via standing variation was also common. Our analyses suggest that teosinte has been a continued source of beneficial alleles for maize, even after domestication, and that maize populations have facilitated adaptation in teosinte by moving beneficial alleles across the landscape. Taken together, our results suggest local adaptation in maize and teosinte has an intermediate geographic scale, one that is larger than individual populations but smaller than the species range.

    1. Evolutionary Biology
    2. Neuroscience
    Gregor Belušič
    Insight

    The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.