The molecular coupling between substrate recognition and ATP turnover in a AAA+ hexameric helicase loader

  1. Neha Puri
  2. Amy J Fernandez
  3. Valerie L O'Shea Murray
  4. Sarah McMillan
  5. James L Keck
  6. James M Berger  Is a corresponding author
  1. Johns Hopkins School of Medicine, United States
  2. University of Wisconsin School of Medicine and Public Health, United States
  3. Johns Hopkins University School of Medicine, United States

Abstract

In many bacteria and in eukaryotes, replication fork establishment requires the controlled loading of hexameric, ring-shaped helicases around DNA by AAA+ ATPases. How loading factors use ATP to control helicase deposition is poorly understood. Here, we dissect how specific ATPase elements of E. coli DnaC, an archetypal loader for the bacterial DnaB helicase, play distinct roles in helicase loading and the activation of DNA unwinding. We identify a new element, the arginine-coupler, which regulates the switch-like behavior of DnaC to prevent futile ATPase cycling and maintains loader responsiveness to replication restart systems. Our data help explain how the ATPase cycle of a AAA+-family helicase loader is channeled into productive action on its target; comparative studies indicate elements analogous to the Arg-coupler are present in related, switch-like AAA+ proteins that control replicative helicase loading in eukaryotes, as well as polymerase clamp loading and certain classes of DNA transposases.

Data availability

All data generated during this study is included in the manuscript and supplemental files.

Article and author information

Author details

  1. Neha Puri

    Department Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    Neha Puri, Neha Puri is affiliated with FogPharma. The author has no financial interests to declare..
  2. Amy J Fernandez

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Valerie L O'Shea Murray

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    Valerie L O'Shea Murray, Valerie L. O'Shea Murray is affiliated with Saul Ewing Arnstein & Lehr, LLP. The author has no financial interests to declare..
  4. Sarah McMillan

    Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    No competing interests declared.
  5. James L Keck

    Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    No competing interests declared.
  6. James M Berger

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    jberge29@jhmi.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0666-1240

Funding

National Institute of General Medical Sciences (R37-GM71747)

  • James M Berger

National Institute of General Medical Sciences (R01-GM098885)

  • James L Keck

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Puri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,644
    views
  • 232
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Neha Puri
  2. Amy J Fernandez
  3. Valerie L O'Shea Murray
  4. Sarah McMillan
  5. James L Keck
  6. James M Berger
(2021)
The molecular coupling between substrate recognition and ATP turnover in a AAA+ hexameric helicase loader
eLife 10:e64232.
https://doi.org/10.7554/eLife.64232

Share this article

https://doi.org/10.7554/eLife.64232

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.