The molecular coupling between substrate recognition and ATP turnover in a AAA+ hexameric helicase loader

  1. Neha Puri
  2. Amy J Fernandez
  3. Valerie L O'Shea Murray
  4. Sarah McMillan
  5. James L Keck
  6. James M Berger  Is a corresponding author
  1. Johns Hopkins School of Medicine, United States
  2. University of Wisconsin School of Medicine and Public Health, United States
  3. Johns Hopkins University School of Medicine, United States

Abstract

In many bacteria and in eukaryotes, replication fork establishment requires the controlled loading of hexameric, ring-shaped helicases around DNA by AAA+ ATPases. How loading factors use ATP to control helicase deposition is poorly understood. Here, we dissect how specific ATPase elements of E. coli DnaC, an archetypal loader for the bacterial DnaB helicase, play distinct roles in helicase loading and the activation of DNA unwinding. We identify a new element, the arginine-coupler, which regulates the switch-like behavior of DnaC to prevent futile ATPase cycling and maintains loader responsiveness to replication restart systems. Our data help explain how the ATPase cycle of a AAA+-family helicase loader is channeled into productive action on its target; comparative studies indicate elements analogous to the Arg-coupler are present in related, switch-like AAA+ proteins that control replicative helicase loading in eukaryotes, as well as polymerase clamp loading and certain classes of DNA transposases.

Data availability

All data generated during this study is included in the manuscript and supplemental files.

Article and author information

Author details

  1. Neha Puri

    Department Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    Neha Puri, Neha Puri is affiliated with FogPharma. The author has no financial interests to declare..
  2. Amy J Fernandez

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Valerie L O'Shea Murray

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    Valerie L O'Shea Murray, Valerie L. O'Shea Murray is affiliated with Saul Ewing Arnstein & Lehr, LLP. The author has no financial interests to declare..
  4. Sarah McMillan

    Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    No competing interests declared.
  5. James L Keck

    Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    No competing interests declared.
  6. James M Berger

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    jberge29@jhmi.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0666-1240

Funding

National Institute of General Medical Sciences (R37-GM71747)

  • James M Berger

National Institute of General Medical Sciences (R01-GM098885)

  • James L Keck

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John Kuriyan, University of California, Berkeley, United States

Version history

  1. Received: October 21, 2020
  2. Accepted: May 25, 2021
  3. Accepted Manuscript published: May 26, 2021 (version 1)
  4. Version of Record published: June 18, 2021 (version 2)

Copyright

© 2021, Puri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,345
    Page views
  • 203
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Neha Puri
  2. Amy J Fernandez
  3. Valerie L O'Shea Murray
  4. Sarah McMillan
  5. James L Keck
  6. James M Berger
(2021)
The molecular coupling between substrate recognition and ATP turnover in a AAA+ hexameric helicase loader
eLife 10:e64232.
https://doi.org/10.7554/eLife.64232

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Riham Ayoubi, Joel Ryan ... Carl Laflamme
    Research Advance

    Antibodies are critical reagents to detect and characterize proteins. It is commonly understood that many commercial antibodies do not recognize their intended targets, but information on the scope of the problem remains largely anecdotal, and as such, feasibility of the goal of at least one potent and specific antibody targeting each protein in a proteome cannot be assessed. Focusing on antibodies for human proteins, we have scaled a standardized characterization approach using parental and knockout cell lines (Laflamme et al., 2019) to assess the performance of 614 commercial antibodies for 65 neuroscience-related proteins. Side-by-side comparisons of all antibodies against each target, obtained from multiple commercial partners, have demonstrated that: (i) more than 50% of all antibodies failed in one or more applications, (ii) yet, ~50–75% of the protein set was covered by at least one high-performing antibody, depending on application, suggesting that coverage of human proteins by commercial antibodies is significant; and (iii) recombinant antibodies performed better than monoclonal or polyclonal antibodies. The hundreds of underperforming antibodies identified in this study were found to have been used in a large number of published articles, which should raise alarm. Encouragingly, more than half of the underperforming commercial antibodies were reassessed by the manufacturers, and many had alterations to their recommended usage or were removed from the market. This first study helps demonstrate the scale of the antibody specificity problem but also suggests an efficient strategy toward achieving coverage of the human proteome; mine the existing commercial antibody repertoire, and use the data to focus new renewable antibody generation efforts.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Rui-Qiu Yang, Yong-Hong Chen ... Cheng-Gang Zou
    Research Article

    An imbalance of the gut microbiota, termed dysbiosis, has a substantial impact on host physiology. However, the mechanism by which host deals with gut dysbiosis to maintain fitness remains largely unknown. In Caenorhabditis elegans, Escherichia coli, which is its bacterial diet, proliferates in its intestinal lumen during aging. Here, we demonstrate that progressive intestinal proliferation of E. coli activates the transcription factor DAF-16, which is required for maintenance of longevity and organismal fitness in worms with age. DAF-16 up-regulates two lysozymes lys-7 and lys-8, thus limiting the bacterial accumulation in the gut of worms during aging. During dysbiosis, the levels of indole produced by E. coli are increased in worms. Indole is involved in the activation of DAF-16 by TRPA-1 in neurons of worms. Our finding demonstrates that indole functions as a microbial signal of gut dysbiosis to promote fitness of the host.