Coupling between motor cortex and striatum increases during sleep over long-term skill learning

Abstract

The strength of cortical connectivity to the striatum influences the balance between behavioral variability and stability. Learning to consistently produce a skilled action requires plasticity in corticostriatal connectivity associated with repeated training of the action. However, it remains unknown whether such corticostriatal plasticity occurs during training itself or 'offline' during time away from training, such as sleep. Here, we monitor the corticostriatal network throughout long-term skill learning in rats and find that non-REM (NREM) sleep is a relevant period for corticostriatal plasticity. We first show that the offline activation of striatal NMDA receptors is required for skill learning. We then show that corticostriatal functional connectivity increases offline, coupled to emerging consistent skilled movements and coupled cross-area neural dynamics. We then identify NREM sleep spindles as uniquely poised to mediate corticostriatal plasticity, through interactions with slow oscillations. Our results provide evidence that sleep shapes cross-area coupling required for skill learning.

Data availability

The data and corresponding code used for analyses have been made available on Dryad (DOI: 10.7272/Q6KK9927).

The following data sets were generated

Article and author information

Author details

  1. Stefan M Lemke

    Neurology, UCSF, San Francicso, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1721-5425
  2. Dhakshin S Ramanathan

    Psychiatry, UCSD, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David Darevksy

    Neurology, UCSF, San Francicso, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Egert

    Neurology, UCSF, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joshua D Berke

    Neurology, UCSF, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1436-6823
  6. Karunesh Ganguly

    Neurology, UCSF, San Francisco, United States
    For correspondence
    karunesh.ganguly@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2570-9943

Funding

Veterans Health Association (I01RX001640-06)

  • Karunesh Ganguly

NIMH (R01MH111871-04)

  • Karunesh Ganguly

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with guidelines from the USDA Animal Welfare Act and United States Public Health Science Policy. Procedures were in accordance with protocols approved by the Institutional Animal Care and Use Committee at the San Francisco Veterans Affairs Medical Center (Protocol 19-002).

Copyright

© 2021, Lemke et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,493
    views
  • 485
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefan M Lemke
  2. Dhakshin S Ramanathan
  3. David Darevksy
  4. Daniel Egert
  5. Joshua D Berke
  6. Karunesh Ganguly
(2021)
Coupling between motor cortex and striatum increases during sleep over long-term skill learning
eLife 10:e64303.
https://doi.org/10.7554/eLife.64303

Share this article

https://doi.org/10.7554/eLife.64303

Further reading

    1. Neuroscience
    Marine Schimel, Ta-Chu Kao, Guillaume Hennequin
    Research Article

    During delayed ballistic reaches, motor areas consistently display movement-specific activity patterns prior to movement onset. It is unclear why these patterns arise: while they have been proposed to seed an initial neural state from which the movement unfolds, recent experiments have uncovered the presence and necessity of ongoing inputs during movement, which may lessen the need for careful initialization. Here, we modeled the motor cortex as an input-driven dynamical system, and we asked what the optimal way to control this system to perform fast delayed reaches is. We find that delay-period inputs consistently arise in an optimally controlled model of M1. By studying a variety of network architectures, we could dissect and predict the situations in which it is beneficial for a network to prepare. Finally, we show that optimal input-driven control of neural dynamics gives rise to multiple phases of preparation during reach sequences, providing a novel explanation for experimentally observed features of monkey M1 activity in double reaching.

    1. Neuroscience
    Jing Jun Wong, Alessandro Bongioanni ... Bolton KH Chau
    Research Article

    Humans make irrational decisions in the presence of irrelevant distractor options. There is little consensus on whether decision making is facilitated or impaired by the presence of a highly rewarding distractor, or whether the distractor effect operates at the level of options’ component attributes rather than at the level of their overall value. To reconcile different claims, we argue that it is important to consider the diversity of people’s styles of decision making and whether choice attributes are combined in an additive or multiplicative way. Employing a multi-laboratory dataset investigating the same experimental paradigm, we demonstrated that people used a mix of both approaches and the extent to which approach was used varied across individuals. Critically, we identified that this variability was correlated with the distractor effect during decision making. Individuals who tended to use a multiplicative approach to compute value, showed a positive distractor effect. In contrast, a negative distractor effect (divisive normalisation) was prominent in individuals tending towards an additive approach. Findings suggest that the distractor effect is related to how value is constructed, which in turn may be influenced by task and subject specificities. This concurs with recent behavioural and neuroscience findings that multiple distractor effects co-exist.