Robust, coherent, and synchronized circadian clock-controlled oscillations along Anabaena filaments

  1. Rinat Arbel-Goren
  2. Valentina Buonfiglio
  3. Francesca Di Patti
  4. Sergio Camargo
  5. Anna Zhitnitsky
  6. Ana Valladares
  7. Enrique Flores
  8. Antonia Herrero
  9. Duccio Fanelli
  10. Joel Stavans  Is a corresponding author
  1. Department of Physics of Complex Systems, Weizmann Institute of Science, Israel
  2. Dipartimento di Fisica e Astronomia, Università di Firenze, INFN and CSDC, Italy
  3. Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Italy
  4. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Spain
13 figures, 1 video, 4 tables and 1 additional file

Figures

Circadian oscillation in Anabaena.

(A) GFP fluorescence in a filament of an Anabaena strain bearing a PpecB-gfp promoter fusion, growing under nitrogen-replete conditions. The snapshots were chosen near maxima and minima of the circadian …

Figure 2 with 1 supplement
Characterization of a clock-controlled gene in Anabaena.

(A) Average cell fluorescence intensity from PpecB-gfp in a filament as a function of time for a wild-type genetic background (full black circles) and for a ΔkaiABC background (empty black circles); …

Figure 2—figure supplement 1
Effects of perturbation of cell-cell communication on the expression of PpecB−gfp.
Figure 3 with 2 supplements
Transcriptional oscillations in the core clock genes, rpaA and pecB.

(A) Relative expression of kaiA (green), kaiB (red), and kaiC (blue) as a function of time measured by RT-qPCR (Materials and methods). A persistence homology analysis of these data is presented in F…

Figure 3—figure supplement 1
Persistent homology analysis of periodic behavior in the trascriptionaltime series of kai genes of Anabaena.
Figure 3—figure supplement 2
Schematic representation and regulatory sequences of the kaiABC, rpaA,pecB and ftsZ promoter regions in Anabaena.
Circadian oscillations in Synechococcus.

(A) Growth and lineage of a cell in patterned agarose, expressing YFP from the kaiBC promoter. The snapshots were chosen near maxima and minima of the circadian oscillations. (B) Fluorescence …

Figure 5 with 1 supplement
Stochastic model for circadian oscillations in Synechococcus.

(A) Schematic representation of interconversion between KaiC phosphoforms modulated by the activity of KaiA in an individual clock. The different phosphoform states of KaiC are denoted by U …

Figure 5—figure supplement 1
Typical shape of the nonlinear function f.
Stochastic model for circadian oscillations in Anabaena.

(A) Schematic representation of the Anabaena filament showing coupling of circadian clocks via cell-cell communication (red arrows). (B) Gillespie simulations of quasi-cycles of T-KaiC in a …

Appendix 1—figure 1
Schematic representation of an Anabaena filament.

The parameter kα measures the connectivity of each node.

Appendix 1—figure 2
Stability diagram.

Stability of the equilibrium points for the three species as a function of γ and [KaiA]. The values of all the other parameters are specified in Appendix 1—table 1. Continuous lines denote stable …

Appendix 1—figure 3
Deterministic limit cycle region.

The portion of the plane delimited by the blue line marks the region of the parameter's space where deterministic regular oscillations occur.

Appendix 1—figure 4
Deterministic simulation.

Results of the numerical integration of system (Equation 23) for γ=8 and [KaiA]=1.2. The other parameters are assigned as specified in Appendix 1—table 1. ϕX for X=T,D,S stands here for the relative abundance of …

Appendix 1—figure 5
Comparison between deterministic and stochastic simulations.

The blue lines denote the result of the numerical integration of Equation (23) while the noisy red lines represent the stochastic simulation of the system through the Gillespie, 1977 algorithm. For …

Appendix 1—figure 6
The complex coherence function: comparison between theory and experiments.

Complex coherence function measuring the correlation of 35 cell segments at the frequency of temporal oscillations. Red circles correspond to experimental data, and the squares represent fits to the …

Appendix 1—figure 7
Construction of an AnabaenaΔkaiABC deletion mutant in the PpecB-gfp genetic background.

PCR, DNA restriction/ligation, and transformation into Escherichia coli were performed by standard techniques. Conjugation from E. coli to Anabaena was performed as described by Elhai et al., 1997, …

Videos

Video 1
Real-time expression of a clock-controlled gene and filament autofluorescence during circadian oscillations in WT Anabaena.

Tables

Table 1
Synchronization of expression of a clock-controlled gene in cells within and between Anabaena filaments.

The synchronization index R for strains with the indicated genotypes (Materials and methods) was measured from the fluorescence intensities of PpecB-gfp expression in the same cells followed over a full …

GenotypeCell clusterR
(mean ± SEM)
nComparison
with strain
p-Value
WTContiguous0.89 ± 0.043WT (separate)0.117
WTSeparate0.85 ± 0.012
WTDifferent filaments0.75 ± 0.042WT (separate)0.026*
ΔsepJΔfraCDContiguous0.73 ± 0.054WT (contiguous)0.001*
ΔkaiABCContiguous0.71 ± 0.033WT0.001*
Key resources table
Reagent type (species)
or resource
DesignationSource or referenceIdentifiersAdditional information
Strain, strain background
(Anabaena)
PpecBgfp,
WT
This paperAnabaena PCC 7120 WT, bearing a
pecB promoter fusion to gfp
Strain, strain background
(Anabaena)
PpecBgfp,
ΔkaiABC
This paperAnabaena PCC 7120 deletion mutant
of the kaiABC genes,
bearing a pecB promoter fusion to gfp
Strain, strain background
(Anabaena)
PhetRgfpdoi: 10.1371/journal.pgen.1005031CSL64Anabaena PCC 7120 WT, bearing a
hetR promoter fusion to gfp
Strain, strain background
(Anabaena)
PpecBgfp,
ΔsepJ/ΔfraC/ΔfraD
This paperAnabaena PCC 7120 deletion mutant
of the sepJ, fraC, fraD
genes (CSVM141), bearing a
pecB promoter fusion to gfp
Strain, strain background
(Synechococcus elongatus)
YFP-SsrAThis paperPCC 7942Synechococcus elongatus PCC
7942 (wild-type) expressing
YFP- SsrA
Recombinant
DNA reagent
EB2316 (plasmid)Addgene plasmid87753http://n2t.net/addgene: 87753
Recombinant
DNA reagent
pSpark (plasmid)CanvaxC0001https://lifescience.canvaxbiotech.com/wpcontent/uploads/sites/2/2015/08pSpark-DNA-Cloning.pdf
Recombinant
DNA reagent
pCSRO sacB- containing
cloning vector
doi: 10.1128/JB.00181-13
Commercial
assay or kit
Fast SYBR Green
Master Mix
Applied Biosystems4385612
Commercial
assay or kit
QuantiTect Reverse
Transcription kit
QIAGEN205311
Appendix 1—table 1
Parameters used in the simulations.
kUT00 h−1kUTA0.479077 h−1
kTD00 h−1kTDA0.212923 h−1
kSD00 h−1kSDA0.505692 h−1
kUS00 h−1kUSA0.0532308 h−1
kTU00.21 h−1kTUA0.0798462 h−1
kDT00 h−1kDTA0.1730000 h−1
kDS00.31 h−1kDSA−0.319885 h−1
kSU00.11 h−1kSUA−0.133077 h−1
k1/20.43 µM[KaiC]3.4 µM
  1. All the values are from Lambert et al., 2016.

Appendix 1—table 2
Oligodeoxynucleotide primers used in this work.
NameSequence 5′–3′
alr0523-EcoRI-FwTTTTGAATTCGCTTATAAACAGCAGTTAACAGGCT
alr0523-RevTGCTACCTCCACCGCCTGCCTGTTCAACTACTTTGGA
4G-GFP-FwGCGGTGGAGGTAGCAAAGGAGAAGAACTTTTCAC
GFP-RevGCCTGAATTCTTATTTGTATAGTTCATCCATGCC
alr0523-1-FwGAATTCGCTTATAAACAGCAGTTAACAGGCT
alr0523-1-RevCTAGCACCTCCACCGCCTGCCTGTTCAACTACTTTGGA
4G-GFP-Fw in plasmid PCSV3ATTTGAAACTGCGCCACGGATC
Rev plasmid PCSV3GACCATGACGGATTAGCTCAGTAG
alr0523(7120)–1CGT GAG TCT CCA ACG GAG GC
Kai-1GAAACTGCAGGCAGAATAGGAAATCTCTAC
Kai-2CCAAATGATATCGTGCTGACAAACCTACAGTGC
Kai-3CAGCACGATATCATTTGGTATCGTACTATATTC
Kai-4CTTTCTGCAGGTTGTCCAGCCAGCAGGGTAG
kaiA-2CAGGGTGAGGCGATAATCCAT
kaiA-1GCCAGAGTACTTGTTTCTAAGCAAC
CK1-RCGATTCCGAAGCCCAACCT
kaiC-4CGAGCTACCAACCGAAAG
kaiB-1CGGCAATACTCCAAACTCAG
PkaiBC-1GGTCTATCCCACGAGAAACC
YFP-2GGTAGCTCAGGTAGTGGTTGTC
all5167-1q (forward)GCTCAAGCAATTCGTCACTGTTCC
all5167-2q (reverse)AAAGATTGCGTCGGTCTGGTGT
rnpB-1q (forward)CTCTTGGTAAGGGTGCAAAGGTG
rnpB-4q (reverse)GGCTCTCTGATAGCGGAACTGG
kaiC-3q (forward)ATGAAGCAGTGGGAGTGGTG
kaiC-8q (reverse)ACGTTACGGGCTATGACCAC
kaiB-1q (forward)ACCAAATTCAGTCAGGGCGT
kaiB-4q (reverse)GCCAATCAGAACTCTTTCCCG
kaiA-3q (forward)CAACTCAAATCAGATTATCGCCA
kaiA-4q (reverse)CTGCCCTCTAGTCGTAGCTG
pecB-1q (forward)ATATTTAATGCTGGTGGTGCTTGTT
pecB-4q (reverse)GCAGCGATCGTCCATGACACTAC
rpaA-1q (forward)TTTAACGCCGGAGCAGATGA
rpaA-4q (reverse)TGTCCGTGACGTTGTAGCAA

Additional files

Download links