SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance

  1. Maurizio Fazio
  2. Ellen van Rooijen
  3. Michelle Dang
  4. Glenn van de Hoek
  5. Julien Ablain
  6. Jeffrey K Mito
  7. Song Yang
  8. Andrew Thomas
  9. Jonathan Michael
  10. Tania Fabo
  11. Rodsy Modhurima
  12. Patrizia Pessina
  13. Charles K Kaufman
  14. Yi Zhou
  15. Richard M White
  16. Leonard I Zon  Is a corresponding author
  1. Boston Children's Hospital, United States
  2. Brigham and Women's Hospital, United States
  3. Washington University School of Medicine, United States
  4. Memorial Sloan Kettering Cancer Center, United States

Abstract

Recent genomic and scRNA-seq analyses of melanoma demonstrated a lack of recurrent genetic drivers of metastasis, while identifying common transcriptional states correlating with invasion or drug resistance. To test whether transcriptional adaptation can drive melanoma progression, we made use of a zebrafish mitfa:BRAFV600E;tp53-/- model, in which malignant progression is characterized by minimal genetic evolution. We undertook an overexpression-screen of 80 epigenetic/transcriptional regulators and found neural crest-mesenchyme developmental regulator SATB2 to accelerate aggressive melanoma development. Its overexpression induces invadopodia formation and invasion in zebrafish tumors and human melanoma cell lines. SATB2 binds and activates neural crest-regulators, including pdgfab and snai2. The transcriptional program induced by SATB2 overlaps with known MITFlowAXLhigh and AQP1+NGFR1high drug resistant states and functionally drives enhanced tumor propagation and resistance to Vemurafenib in vivo. Here we show that melanoma transcriptional rewiring by SATB2 to a neural crest mesenchyme-like program can drive invasion and drug resistance in endogenous tumors.

Data availability

Data sets are deposited to the GEO Gene Expression Omnibus, accession number GSE77923

The following data sets were generated

Article and author information

Author details

  1. Maurizio Fazio

    Stem Cell Program, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0083-6601
  2. Ellen van Rooijen

    Stem Cell Program, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  3. Michelle Dang

    Stem Cell Program, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  4. Glenn van de Hoek

    Stem Cell Program, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  5. Julien Ablain

    Stem Cell Program, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  6. Jeffrey K Mito

    Department of Pathology, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  7. Song Yang

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  8. Andrew Thomas

    Stem Cell Program, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  9. Jonathan Michael

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  10. Tania Fabo

    Stem Cell Program, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8987-0672
  11. Rodsy Modhurima

    Stem Cell Program, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  12. Patrizia Pessina

    Stem Cell Program, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  13. Charles K Kaufman

    Department of Medicine, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3122-1677
  14. Yi Zhou

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  15. Richard M White

    Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    Richard M White, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9099-9169
  16. Leonard I Zon

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    For correspondence
    zon@enders.tch.harvard.edu
    Competing interests
    Leonard I Zon, LIZ is a founder and stockholder of Fate Therapeutics Inc., Scholar Rock Inc., Camp4 Therapeutics Inc., Amagma Therapeutics Inc., and a scientific advisor for Stemgent..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0860-926X

Funding

Boehringer Ingelheim Fonds

  • Maurizio Fazio

Netherlands Organization for Scientific Research (Rubico Fellowship)

  • Ellen van Rooijen

Dutch Cancer Foundation

  • Ellen van Rooijen

National Cancer Institute (R01 CA103846)

  • Leonard I Zon

Melanoma Research Alliance

  • Leonard I Zon

Starr Foundation

  • Richard M White
  • Leonard I Zon

Ellison Foundation

  • Leonard I Zon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Zebrafish were maintained under IACUC-approved conditions (Boston Children's Hospital Institutional Animal Care and Use Committee protocol # 20-10-4253R).

Copyright

© 2021, Fazio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,168
    views
  • 370
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maurizio Fazio
  2. Ellen van Rooijen
  3. Michelle Dang
  4. Glenn van de Hoek
  5. Julien Ablain
  6. Jeffrey K Mito
  7. Song Yang
  8. Andrew Thomas
  9. Jonathan Michael
  10. Tania Fabo
  11. Rodsy Modhurima
  12. Patrizia Pessina
  13. Charles K Kaufman
  14. Yi Zhou
  15. Richard M White
  16. Leonard I Zon
(2021)
SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance
eLife 10:e64370.
https://doi.org/10.7554/eLife.64370

Share this article

https://doi.org/10.7554/eLife.64370

Further reading

    1. Cancer Biology
    Han V Han, Richard Efem ... Richard Z Lin
    Research Article

    Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.

    1. Cancer Biology
    2. Immunology and Inflammation
    Almudena Mendez-Perez, Andres M Acosta-Moreno ... Esteban Veiga
    Short Report

    In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.