Live imaging and biophysical modeling support a button-based mechanism of somatic homolog pairing in Drosophila

  1. Myron Barber Child VI
  2. Jack R Bateman  Is a corresponding author
  3. Amir Jahangiri
  4. Armando Reimer
  5. Nicholas C Lammers
  6. Nica Sabouni
  7. Diego Villamarin
  8. Grace C McKenzie-Smith
  9. Justine E Johnson
  10. Daniel Jost  Is a corresponding author
  11. Hernan G Garcia  Is a corresponding author
  1. University of California at Berkeley, United States
  2. Bowdoin College, United States
  3. Grenoble Alpes University, France
  4. University of California, Berkeley, United States
  5. ENS de Lyon, France

Abstract

3D eukaryotic genome organization provides the structural basis for gene regulation. In Drosophila melanogaster, genome folding is characterized by somatic homolog pairing, where homologous chromosomes are intimately paired from end to end; however, how homologs identify one another and pair has remained mysterious. Recently, this process has been proposed to be driven by specifically interacting 'buttons' encoded along chromosomes. Here, we turned this hypothesis into a quantitative biophysical model to demonstrate that a button-based mechanism can lead to chromosome-wide pairing. We tested our model using live-imaging measurements of chromosomal loci tagged with the MS2 and PP7 nascent RNA labeling systems. We show solid agreement between model predictions and experiments in the pairing dynamics of individual homologous loci. Our results strongly support a button-based mechanism of somatic homolog pairing in Drosophila and provide a theoretical framework for revealing the molecular identity and regulation of buttons.

Data availability

Modeling code is available at: https://github.com/physical-biology-of-chromatin/Homologous_pairingCustom Matlab 2019b image analysis scripts can be found at https://github.com/GarciaLab/mRNADynamics/.Raw figure files of relevant plots are available at: https://www.dropbox.com/sh/cwe1t3u5q4v3yos/AACTXXBF6WiOuLuozX0MZRkba?dl=0Samples of generated data used in this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Myron Barber Child VI

    Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8563-0842
  2. Jack R Bateman

    Biology, Bowdoin College, Brunswick, United States
    For correspondence
    jbateman@bowdoin.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Amir Jahangiri

    TIMC-IMAG, Grenoble Alpes University, La Tronche, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Armando Reimer

    Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicholas C Lammers

    Biophysics Graduate Group, University of California, Berkeley, Oakland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6832-6152
  6. Nica Sabouni

    Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Diego Villamarin

    Biology, Bowdoin College, Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3265-1740
  8. Grace C McKenzie-Smith

    Biology, Bowdoin College, Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Justine E Johnson

    Biology, Bowdoin College, Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel Jost

    Laboratory of Biology and Modelling of the Cell, ENS de Lyon, Lyon, France
    For correspondence
    daniel.jost@ens-lyon.fr
    Competing interests
    The authors declare that no competing interests exist.
  11. Hernan G Garcia

    Molecular and Cell Biology, Physics, University of California, Berkeley, Berkeley, United States
    For correspondence
    hggarcia@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5212-3649

Funding

Burroughs Wellcome Fund (Career Award at the Scientific Interface)

  • Hernan G Garcia

ITMO Cancer (BIO2015-08)

  • Daniel Jost

National Institutes of Health (P20 GM0103423,R15 GM132896-01)

  • Jack R Bateman

National Science Foundation (CAREER Award 1349779)

  • Jack R Bateman

Alfred P. Sloan Foundation (Sloan Research Fellowship)

  • Hernan G Garcia

Human Frontier Science Program

  • Hernan G Garcia

Searle Scholars Program

  • Hernan G Garcia

Shurl and Kay Curci Foundation

  • Hernan G Garcia

Hellman Foundation

  • Hernan G Garcia

National Institutes of Health (Director's New Innovator Award,DP2 OD024541-01)

  • Hernan G Garcia

National Science Foundation (CAREER Award,1652236)

  • Hernan G Garcia

Agence Nationale pour la Recherche (ANR-18-CE12-0006-03,ANR-18-CE45-0022-01)

  • Daniel Jost

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Child et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,614
    views
  • 204
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Myron Barber Child VI
  2. Jack R Bateman
  3. Amir Jahangiri
  4. Armando Reimer
  5. Nicholas C Lammers
  6. Nica Sabouni
  7. Diego Villamarin
  8. Grace C McKenzie-Smith
  9. Justine E Johnson
  10. Daniel Jost
  11. Hernan G Garcia
(2021)
Live imaging and biophysical modeling support a button-based mechanism of somatic homolog pairing in Drosophila
eLife 10:e64412.
https://doi.org/10.7554/eLife.64412

Share this article

https://doi.org/10.7554/eLife.64412

Further reading

    1. Physics of Living Systems
    James E Hammond, Ruth E Baker, Berta Verd
    Research Article

    Vertebrates have evolved great diversity in the number of segments dividing the trunk body, however, the developmental origin of the evolvability of this trait is poorly understood. The number of segments is thought to be determined in embryogenesis as a product of morphogenesis of the pre-somitic mesoderm (PSM) and the periodicity of a molecular oscillator active within the PSM known as the segmentation clock. Here, we explore whether the clock and PSM morphogenesis exhibit developmental modularity, as independent evolution of these two processes may explain the high evolvability of segment number. Using a computational model of the clock and PSM parameterised for zebrafish, we find that the clock is broadly robust to variation in morphogenetic processes such as cell ingression, motility, compaction, and cell division. We show that this robustness is in part determined by the length of the PSM and the strength of phase coupling in the clock. As previous studies report no changes to morphogenesis upon perturbing the clock, we suggest that the clock and morphogenesis of the PSM exhibit developmental modularity.

    1. Physics of Living Systems
    Emmanuel Akabuogu, Victor Carneiro da Cunha Martorelli ... Thomas A Waigh
    Research Article

    Bacterial biofilms are communities of bacteria usually attached to solid strata and often differentiated into complex structures. Communication across biofilms has been shown to involve chemical signaling and, more recently, electrical signaling in Gram-positive biofilms. We report for the first time, community-level synchronized membrane potential dynamics in three-dimensional Escherichia coli biofilms. Two hyperpolarization events are observed in response to light stress. The first requires mechanically sensitive ion channels (MscK, MscL, and MscS) and the second needs the Kch-potassium channel. The channels mediated both local spiking of single E. coli biofilms and long-range coordinated electrical signaling in E. coli biofilms. The electrical phenomena are explained using Hodgkin-Huxley and 3D fire-diffuse-fire agent-based models. These data demonstrate that electrical wavefronts based on potassium ions are a mechanism by which signaling occurs in Gram-negative biofilms and as such may represent a conserved mechanism for communication across biofilms.