Receptor-mediated mitophagy regulates EPO production and protects against renal anemia

Abstract

Erythropoietin (EPO) drives erythropoiesis and is secreted mainly by the kidney upon hypoxic or anemic stress. The paucity of EPO production in renal EPO-producing cells (REPs) causes renal anemia, one of the most common complications of chronic nephropathies. Although mitochondrial dysfunction is commonly observed in several renal and hematopoietic disorders, the mechanism by which mitochondrial quality control impacts renal anemia remains elusive. In this study, we showed that FUNDC1, a mitophagy receptor, plays a critical role in EPO-driven erythropoiesis induced by stresses. Mechanistically, EPO production is impaired in REPs in Fundc1-/- mice upon stresses, and the impairment is caused by the accumulation of damaged mitochondria, which consequently leads to the elevation of the reactive oxygen species (ROS) level and triggers inflammatory responses by up-regulating proinflammatory cytokines. These inflammatory factors promote the myofibroblastic transformation of REPs, resulting in the reduction of EPO production. We therefore provide a link between aberrant mitophagy and deficient EPO generation in renal anemia. Our results also suggest that the mitochondrial quality control safeguards REPs under stresses, which may serve as a potential therapeutic strategy for the treatment of renal anemia.

Data availability

RNA-Sequencing data is deposited at GEO Accession number GSE 158361. Information on replicates is presented in Materials and Methods as well as in figure legend. Replicate numbers are mentioned in figure legends. All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Guangfeng Geng

    College of Life Sciences, Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jinhua Liu

    Chinese Academy of Medical Sciences, Institute of Hematology and Blood Diseases Hospital, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Changlu Xu

    Chinese Academy of Medical Sciences, Institute of Hematology and Blood Diseases Hospital, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1581-7027
  4. Yandong yan Pei

    College of Life Sciences, Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Linbo Chen

    College of Life Sciences, Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Chenglong Mu

    College of Life Sciences, Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Ding Wang

    Chinese Academy of Medical Sciences, Institute of Hematology and Blood Diseases Hospital, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jie Gao

    Chinese Academy of Medical Sciences, Institute of Hematology and Blood Diseases Hospital, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yue Li

    Chinese Academy of Medical Sciences, Institute of Hematology and Blood Diseases Hospital, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Jing Liang

    Chinese Academy of Medical Sciences, Institute of Hematology and Blood Diseases Hospital, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Tian Zhao

    College of Life Sciences, Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Chuanmei Zhang

    College of Life Sciences, Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Jiaxi Zhou

    Chinese Academy of Medical Sciences, Institute of Hematology and Blood Diseases Hospital, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Quan Chen

    College of Life Sciences, Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7539-8728
  15. Yushan Zhu

    College of Life Sciences, Nankai University, Tianjin, China
    For correspondence
    zhuys@nankai.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5648-0416
  16. Lihong Shi

    Chinese Academy of Medical Sciences, Institute of Hematology and Blood Diseases Hospital, Tianjin, China
    For correspondence
    shilihongxys@ihcams.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8876-0802

Funding

National Key Research and Development Program of China (2019YFA0508601,2017YFA0103102,2016YFA0102300)

  • Quan Chen

National Natural Science Foundation of China (91849201,31790404)

  • Quan Chen

National Key Research and Development Program of China (2019YFA0508603)

  • Yushan Zhu

National Natural Science Foundation of China (32030026)

  • Yushan Zhu

National Natural Science Foundation of China (81870089,81890990,81700105)

  • Lihong Shi

The CAMS innovation Fund for Medical Sciences (2016-I2M-3-002,2019-I2M-1-006,2016-I2M-1-018 and 2017-I2M-1-015)

  • Lihong Shi

The authors declare that there was no funding for this work

Ethics

Animal experimentation: Mice were maintained in the animal core facility of College of Life Sciences , Nankai University, Tianjin, China. All experiments involving animals were reviewed and approved by the Animal Care and Use Committee of Nankai University and were performed in accordance with the university guidelines (NO. 2021-SYDWLL-000410).

Copyright

© 2021, Geng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,578
    views
  • 295
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guangfeng Geng
  2. Jinhua Liu
  3. Changlu Xu
  4. Yandong yan Pei
  5. Linbo Chen
  6. Chenglong Mu
  7. Ding Wang
  8. Jie Gao
  9. Yue Li
  10. Jing Liang
  11. Tian Zhao
  12. Chuanmei Zhang
  13. Jiaxi Zhou
  14. Quan Chen
  15. Yushan Zhu
  16. Lihong Shi
(2021)
Receptor-mediated mitophagy regulates EPO production and protects against renal anemia
eLife 10:e64480.
https://doi.org/10.7554/eLife.64480

Share this article

https://doi.org/10.7554/eLife.64480

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.