Synaptotagmin-7 places dense-core vesicles at the cell membrane to promote Munc13-2- and Ca2+-dependent priming

  1. Bassam Tawfik
  2. Joana S Martins
  3. Sébastien Houy
  4. Cordelia Imig
  5. Paulo S Pinheiro
  6. Sonja M Wojcik
  7. Nils Brose
  8. Benjamin H Cooper
  9. Jakob Balslev Sørensen  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. Max Planck Institute of Experimental Medicine, Germany

Abstract

Synaptotagmins confer calcium-dependence to the exocytosis of secretory vesicles, but how coexpressed synaptotagmins interact remains unclear. We find that synaptotagmin-1 and synaptotagmin-7 when present alone act as standalone fast and slow Ca2+-sensors for vesicle fusion in mouse chromaffin cells. When present together, synaptotagmin-1 and synaptotagmin-7 are found in largely non-overlapping clusters on dense-core vesicles. Synaptotagmin-7 stimulates Ca2+-dependent vesicle priming and inhibits depriming, and it promotes ubMunc13-2- and phorbolester-dependent priming, especially at low resting calcium concentrations. The priming effect of synaptotagmin-7 increases the number of vesicles fusing via synaptotagmin-1, while negatively affecting their fusion speed, indicating both synergistic and competitive interactions between synaptotagmins. Synaptotagmin-7 places vesicles in close membrane apposition (<6 nm); without it, vesicles accumulate out of reach of the fusion complex (20-40 nm). We suggest that a synaptotagmin-7-dependent movement toward the membrane is involved in Munc13-2/phorbolester/Ca2+-dependent priming as a prelude to fast and slow exocytosis triggering.

Data availability

All data generated or analysed during this study are or will be included in the manuscript and supporting files.

Article and author information

Author details

  1. Bassam Tawfik

    Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1193-8494
  2. Joana S Martins

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  3. Sébastien Houy

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3639-1931
  4. Cordelia Imig

    Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7351-8706
  5. Paulo S Pinheiro

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  6. Sonja M Wojcik

    Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    Competing interests
    No competing interests declared.
  7. Nils Brose

    Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    Competing interests
    Nils Brose, Reviewing editor, eLife.
  8. Benjamin H Cooper

    Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    Competing interests
    No competing interests declared.
  9. Jakob Balslev Sørensen

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    jakobbs@sund.ku.dk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5465-3769

Funding

University of Copenhagen 2016 excellence program (KU2016)

  • Jakob Balslev Sørensen

Novo Nordisk Foundation (NNF19OC0058298)

  • Jakob Balslev Sørensen

Lundbeckfonden (R221-2016-1202)

  • Jakob Balslev Sørensen

Independent Research Fund Denmark (0134-00141A)

  • Jakob Balslev Sørensen

Lundbeckfonden (R34-A3740)

  • Paulo S Pinheiro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were kept in an AAALAC-accredited stable at the University of Copenhagen operating a 12h/12h light/dark cycle with access to water and food ad libitum. Permission to keep and breed KO mice were obtained from the Danish Animal Experiments Inspectorate (permissions 2006/562-43 and 2018-15-0202-00157).

Copyright

© 2021, Tawfik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,799
    views
  • 413
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bassam Tawfik
  2. Joana S Martins
  3. Sébastien Houy
  4. Cordelia Imig
  5. Paulo S Pinheiro
  6. Sonja M Wojcik
  7. Nils Brose
  8. Benjamin H Cooper
  9. Jakob Balslev Sørensen
(2021)
Synaptotagmin-7 places dense-core vesicles at the cell membrane to promote Munc13-2- and Ca2+-dependent priming
eLife 10:e64527.
https://doi.org/10.7554/eLife.64527

Share this article

https://doi.org/10.7554/eLife.64527

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Jian Qiu, Margaritis Voliotis ... Martin J Kelly
    Research Article

    Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1ARH) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1ARH neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17β-estradiol (E2) reduces peptide expression but increases Slc17a6 (Vglut2) mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current that contributes to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of canonical transient receptor potential (TPRC) 5 and G protein-coupled K+ (GIRK) channels. When Trpc5 channels in Kiss1ARH neurons were deleted using CRISPR/SaCas9, the slow excitatory postsynaptic potential was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of Kiss1ARH neurons, suggesting that E2 modifies ionic conductances in these neurons, enabling the transition from high-frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1ARH neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.

    1. Cell Biology
    2. Neuroscience
    Luis Sánchez-Guardado, Peyman Callejas Razavi ... Carlos Lois
    Research Article

    The assembly and maintenance of neural circuits is crucial for proper brain function. Although the assembly of brain circuits has been extensively studied, much less is understood about the mechanisms controlling their maintenance as animals mature. In the olfactory system, the axons of olfactory sensory neurons (OSNs) expressing the same odor receptor converge into discrete synaptic structures of the olfactory bulb (OB) called glomeruli, forming a stereotypic odor map. The OB projection neurons, called mitral and tufted cells (M/Ts), have a single dendrite that branches into a single glomerulus, where they make synapses with OSNs. We used a genetic method to progressively eliminate the vast majority of M/T cells in early postnatal mice, and observed that the assembly of the OB bulb circuits proceeded normally. However, as the animals became adults the apical dendrite of remaining M/Ts grew multiple branches that innervated several glomeruli, and OSNs expressing single odor receptors projected their axons into multiple glomeruli, disrupting the olfactory sensory map. Moreover, ablating the M/Ts in adult animals also resulted in similar structural changes in the projections of remaining M/Ts and axons from OSNs. Interestingly, the ability of these mice to detect odors was relatively preserved despite only having 1–5% of projection neurons transmitting odorant information to the brain, and having highly disrupted circuits in the OB. These results indicate that a reduced number of projection neurons does not affect the normal assembly of the olfactory circuit, but induces structural instability of the olfactory circuitry of adult animals.