Dichloroacetate reverses sepsis-induced hepatic metabolic dysfunction

  1. Rabina Mainali
  2. Manal Zabalawi
  3. David Long
  4. Nancy Buechler
  5. Ellen Quillen
  6. Chia-Chi Key
  7. Xuewei Zhu
  8. John S Parks
  9. Cristina Furdui
  10. Peter W Stacpoole
  11. Jennifer Martinez
  12. Charles E McCall  Is a corresponding author
  13. Matthew A Quinn  Is a corresponding author
  1. Wake Forest School of Medicine, United States
  2. University of Florida School of Medicine, United States
  3. National Institute of Environmental Health Sciences, United States

Abstract

Metabolic reprogramming between resistance and tolerance occurs within the immune system in response to sepsis. While metabolic tissues such as the liver are subject to damage during sepsis, how their metabolic and energy reprogramming ensures survival is unclear. Employing comprehensive metabolomic, lipidomic, and transcriptional profiling in a mouse model of sepsis, we show that hepatocyte lipid metabolism, mitochondrial TCA energetics, and redox balance are significantly reprogramed after cecal ligation and puncture (CLP). We identify increases in TCA cycle metabolites citrate, cis-aconitate, and itaconate with reduced fumarate and triglyceride accumulation in septic hepatocytes. Transcriptomic analysis of liver tissue supports and extends the hepatocyte findings. Strikingly, the administration of the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate (DCA) reverses dysregulated hepatocyte metabolism and mitochondrial dysfunction. In summary, our data indicate sepsis promotes hepatic metabolic dysfunction and that targeting the mitochondrial PDC/PDK energy homeostat rebalances transcriptional and metabolic manifestations of sepsis within the liver.

Data availability

Sequencing data have been deposited in GEO under accession code GSE167127

The following data sets were generated

Article and author information

Author details

  1. Rabina Mainali

    Pathology, Wake Forest School of Medicine, Winston Salem, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Manal Zabalawi

    Internal Medicine, Wake Forest School of Medicine, Winston Salem, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David Long

    Internal Medicine, Wake Forest School of Medicine, Winston Salem, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nancy Buechler

    Pathology, Wake Forest School of Medicine, Winston Salem, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ellen Quillen

    Internal Medicine, Wake Forest School of Medicine, Winston Salem, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Chia-Chi Key

    Internal Medicine, Wake Forest School of Medicine, Winston Salem, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0669-2936
  7. Xuewei Zhu

    Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. John S Parks

    Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5227-8915
  9. Cristina Furdui

    Internal Medicine, Wake Forest School of Medicine, Winston Salem, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter W Stacpoole

    Biochemistry and Molecular Biology, University of Florida School of Medicine, Gainseville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jennifer Martinez

    Inflammation and Immunology Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Charles E McCall

    Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, United States
    For correspondence
    chmccall@wakehealth.edu
    Competing interests
    The authors declare that no competing interests exist.
  13. Matthew A Quinn

    Pathology/Internal Medicine, Wake Forest School of Medicine, Winston Salem, United States
    For correspondence
    mquinn@wakehealth.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3528-6569

Funding

National Institute of Environmental Health Sciences (1ZIAES10328601)

  • Jennifer Martinez

National Heart, Lung, and Blood Institute (R01 HL132035)

  • Xuewei Zhu

National Institute of Diabetes and Digestive and Kidney Diseases (K01 DK117069)

  • Chia-Chi Key

National Institute on Aging (K01 AG056663)

  • Ellen Quillen

National Institute of Allergy and Infectious Diseases (R01 AI065791)

  • Charles E McCall

National Institute of General Medical Sciences (R01 GM102497)

  • Charles E McCall

National Institute of General Medical Sciences (R35 GM126922)

  • Charles E McCall

National Heart, Lung, and Blood Institute (R01 HL119962)

  • John S Parks

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (A19-097) Wake Forest School of Medicine.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,078
    views
  • 315
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rabina Mainali
  2. Manal Zabalawi
  3. David Long
  4. Nancy Buechler
  5. Ellen Quillen
  6. Chia-Chi Key
  7. Xuewei Zhu
  8. John S Parks
  9. Cristina Furdui
  10. Peter W Stacpoole
  11. Jennifer Martinez
  12. Charles E McCall
  13. Matthew A Quinn
(2021)
Dichloroacetate reverses sepsis-induced hepatic metabolic dysfunction
eLife 10:e64611.
https://doi.org/10.7554/eLife.64611

Share this article

https://doi.org/10.7554/eLife.64611

Further reading

    1. Immunology and Inflammation
    Yue Yang, Bin Huang ... Fangfang Zhang
    Research Article

    Adipose tissue inflammation is now considered to be a key process underlying metabolic diseases in obese individuals. However, it remains unclear how adipose inflammation is initiated and maintained or the mechanism by which inflammation develops. We found that microRNA-802 (Mir802) expression in adipose tissue is progressively increased with the development of dietary obesity in obese mice and humans. The increasing trend of Mir802 preceded the accumulation of macrophages. Adipose tissue-specific knockout of Mir802 lowered macrophage infiltration and ameliorated systemic insulin resistance. Conversely, the specific overexpression of Mir802 in adipose tissue aggravated adipose inflammation in mice fed a high-fat diet. Mechanistically, Mir802 activates noncanonical and canonical NF-κB pathways by targeting its negative regulator, TRAF3. Next, NF-κB orchestrated the expression of chemokines and SREBP1, leading to strong recruitment and M1-like polarization of macrophages. Our findings indicate that Mir802 endows adipose tissue with the ability to recruit and polarize macrophages, which underscores Mir802 as an innovative and attractive candidate for miRNA-based immune therapy for adipose inflammation.

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.