A robust method for particulate detection of a genetic tag for 3D electron microscopy
Abstract
Genetic tags allow rapid localization of tagged proteins in cells and tissues. APEX, an ascorbate peroxidase, has proven to be one of the most versatile and robust genetic tags for ultrastructural localization by electron microscopy. Here we describe a simple method, APEX-Gold, which converts the diffuse oxidized diaminobenzidine reaction product of APEX into a silver/gold particle akin to that used for immunogold labelling. The method increases the signal to noise ratio for EM detection, providing unambiguous detection of the tagged protein, and creates a readily quantifiable particulate signal. We demonstrate the wide applicability of this method for detection of membrane proteins, cytoplasmic proteins and cytoskeletal proteins. The method can be combined with different electron microscopic techniques including fast freezing and freeze substitution, focussed ion beam scanning electron microscopy, and electron tomography. Quantitation of expressed APEX-fusion proteins is achievable using membrane vesicles generated by a cell-free expression system. These membrane vesicles possess a defined quantum of signal, which can act as an internal standard for determination of the absolute density of expressed APEX-fusion proteins. Detection of fusion proteins expressed at low levels in cells from CRISPR-edited mice demonstrates the high sensitivity of the APEX-Gold method.
Data availability
All data generated or analysed during this study are included in the manuscript.
Article and author information
Author details
Funding
National Health and Medical Research Council (APP1140064)
- Robert G Parton
The Kid's Cancer Project
- Edna C Hardeman
- Peter W Gunning
International Cotutelle Macquarie University Research Excellence Scholarship (iMQRES 2019060)
- Marcel Ethan Sayre
National Health and Medical Research Council (APP1150083)
- Arthur Christopoulos
- Robert G Parton
National Health and Medical Research Council (APP1156489)
- Robert G Parton
National Health and Medical Research Council (APP1185021)
- Nicholas Ariotti
Australian Research Council centre of excellence in Convergent Bio-Nano Science and Technology (CE140100036)
- Robert G Parton
Australian Department of Industry, Innovation and Science Cooperative Research Centre Project (CRC-P)
- Edna C Hardeman
- Peter W Gunning
Australian Research Council (DP160101623)
- Edna C Hardeman
- Peter W Gunning
National Health and Medical Research Council (APP1100202)
- Edna C Hardeman
- Peter W Gunning
National Health and Medical Research Council (APP1079866)
- Edna C Hardeman
- Peter W Gunning
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Rae et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,265
- views
-
- 457
- downloads
-
- 21
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist Trypanosoma brucei, a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system. Here, advanced light and electron microscopy imaging techniques, together with biochemical and biophysical assays, were used to explore the relationship between the actomyosin and endomembrane systems. The class I myosin (TbMyo1) had a large cytosolic pool and its ability to translocate actin filaments in vitro was shown here for the first time. TbMyo1 exhibited strong association with the endosomal system and was additionally found on glycosomes. At the endosomal membranes, TbMyo1 colocalised with markers for early and late endosomes (TbRab5A and TbRab7, respectively), but not with the marker associated with recycling endosomes (TbRab11). Actin and myosin were simultaneously visualised for the first time in trypanosomes using an anti-actin chromobody. Disruption of the actomyosin system using the actin-depolymerising drug latrunculin A resulted in a delocalisation of both the actin chromobody signal and an endosomal marker, and was accompanied by a specific loss of endosomal structure. This suggests that the actomyosin system is required for maintaining endosomal integrity in T. brucei.
-
- Cell Biology
Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion. In wild-type, the two cargoes dynamically label distinct secretory compartments, highlighted by the finding that, unlike SynA, UapA does not colocalize with the late-Golgi. In line with early partitioning into distinct secretory carriers, the two cargoes collapse in distinct ER-Exit Sites (ERES) in a sec31ts background. Trafficking via distinct cargo-specific carriers is further supported by showing that repression of proteins essential for conventional cargo secretion does not affect UapA trafficking, while blocking SynA secretion. Overall, this work establishes the existence of distinct, cargo-dependent, trafficking mechanisms, initiating at ERES and being differentially dependent on Golgi and SNARE interactions.