In vivo proteomic mapping through GFP-directed proximity-dependent biotin labelling in zebrafish

  1. Zherui Xiong
  2. Harriet P Lo
  3. Kerrie-Ann McMahon
  4. Nick Martel
  5. Alun Jones
  6. Michelle M Hill
  7. Robert G Parton  Is a corresponding author
  8. Thomas E Hall  Is a corresponding author
  1. Institute for Molecular Bioscience, University of Queensland, Australia
  2. QIMR Berghofer Medical Research Institute, Australia

Abstract

Protein interaction networks are crucial for complex cellular processes. However, the elucidation of protein interactions occurring within highly specialised cells and tissues is challenging. Here we describe the development, and application, of a new method for proximity-dependent biotin labelling in whole zebrafish. Using a conditionally stabilised GFP-binding nanobody to target a biotin ligase to GFP-labelled proteins of interest, we show tissue-specific proteomic profiling using existing GFP-tagged transgenic zebrafish lines. We demonstrate the applicability of this approach, termed BLITZ (Biotin Labelling In Tagged Zebrafish), in diverse cell types such as neurons and vascular endothelial cells. We applied this methodology to identify interactors of caveolar coat protein, cavins, in skeletal muscle. Using this system, we defined specific interaction networks within in vivo muscle cells for the closely related but functionally distinct Cavin4 and Cavin1 proteins.

Data availability

All data generated or analysed during this study are included in the manuscript and supplementary files. Source data files have been provided for Figures 1, 2, 4 and 5

Article and author information

Author details

  1. Zherui Xiong

    Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5038-5629
  2. Harriet P Lo

    Department of Cell and Developmental Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Kerrie-Ann McMahon

    Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Nick Martel

    Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Alun Jones

    Mass Spectrometry Facility, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Michelle M Hill

    Precision & Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1134-0951
  7. Robert G Parton

    Mass Spectrometry Facility, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    For correspondence
    r.parton@imb.uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7494-5248
  8. Thomas E Hall

    Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    For correspondence
    thomas.hall@imb.uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7718-7614

Funding

National Health and Medical Research Council (569542)

  • Robert G Parton

National Health and Medical Research Council (1045092)

  • Robert G Parton

National Health and Medical Research Council (APP1044041)

  • Robert G Parton

National Health and Medical Research Council (APP1099251)

  • Robert G Parton
  • Thomas E Hall

Australian Research Council (DP200102559)

  • Robert G Parton
  • Thomas E Hall

Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology (CE140100036)

  • Robert G Parton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was approved by Institutional Biosafety Committee, Office of the Gene Technology Regulator, Australian Government Department of Health, and Molecular Biosciences Animal Ethics Committees, the University of Queensland. The ethics approval numbers are IMB/271/19/BREED and IMB/326/17. IBC/OGTR approval number are IBC/1080/IMB/2017.

Copyright

© 2021, Xiong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,772
    views
  • 1,094
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zherui Xiong
  2. Harriet P Lo
  3. Kerrie-Ann McMahon
  4. Nick Martel
  5. Alun Jones
  6. Michelle M Hill
  7. Robert G Parton
  8. Thomas E Hall
(2021)
In vivo proteomic mapping through GFP-directed proximity-dependent biotin labelling in zebrafish
eLife 10:e64631.
https://doi.org/10.7554/eLife.64631

Share this article

https://doi.org/10.7554/eLife.64631

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Róża K Przanowska, Yuechuan Chen ... Anindya Dutta
    Research Article

    The six-subunit ORC is essential for the initiation of DNA replication in eukaryotes. Cancer cell lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2, or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article Updated

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here, we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin 1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration, and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.