Evolution of the complex transcription network controlling biofilm formation in Candida species

  1. Eugenio Mancera  Is a corresponding author
  2. Isabel Nocedal
  3. Stephen Hammel
  4. Megha Gulati
  5. Kaitlin F Mitchell
  6. David R Andes
  7. Clarissa J Nobile
  8. Geraldine Butler
  9. Alexander D Johnson
  1. Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Mexico
  2. Massachusetts Institute of Technology, United States
  3. University College Cork, Ireland
  4. Cell Press, United States
  5. Centers for Disease Control and Prevention, United States
  6. University of Wisconsin, United States
  7. University of California, Merced, United States
  8. Conway Institute, University College Dublin, Ireland
  9. University of California, San Francisco, United States

Abstract

We examine how a complex transcription network composed of seven 'master' regulators and hundreds of target genes evolved over a span of approximately 70 million years. The network controls biofilm formation in several Candida species, a group of fungi that are present in humans both as constituents of the microbiota and as opportunistic pathogens. Using a variety of approaches, we observed two major types of changes that have occurred in the biofilm network since the four extant species we examined last shared a common ancestor. Master regulator 'substitutions' occurred over relatively long evolutionary times, resulting in different species having overlapping, but different sets of master regulators of biofilm formation. Second, massive changes in the connections between the master regulators and their target genes occurred over much shorter timescales. We believe this analysis is the first detailed, empirical description of how a complex transcription network has evolved.

Data availability

ChIP-Seq and microarray gene expression data has been deposited to the NCBI Gene Expression Omnibus (GEO) repository under Superseries GSE160783

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Eugenio Mancera

    Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato, Mexico
    For correspondence
    eugenio.mancera@cinvestav.mx
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0146-8732
  2. Isabel Nocedal

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4706-1113
  3. Stephen Hammel

    The School of Computer Sciences and IT, University College Cork, Cork, Ireland
    Competing interests
    No competing interests declared.
  4. Megha Gulati

    Molecular Cell, Cell Press, Cambridge, United States
    Competing interests
    No competing interests declared.
  5. Kaitlin F Mitchell

    Center for Global Health, Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    No competing interests declared.
  6. David R Andes

    Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, United States
    Competing interests
    No competing interests declared.
  7. Clarissa J Nobile

    Molecular and Cell Biology, University of California, Merced, Merced, United States
    Competing interests
    Clarissa J Nobile, Clarissa J. Nobile and Alexander D. Johnson are cofounders of BioSynesis, Inc., a company developing diagnostics and therapeutics for biofilm formation..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0799-6499
  8. Geraldine Butler

    School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1770-5301
  9. Alexander D Johnson

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    Alexander D Johnson, Clarissa J. Nobile and Alexander D. Johnson are cofounders of BioSynesis, Inc., a company developing diagnostics and therapeutics for biofilm formation..

Funding

Human Frontiers Science Program (LT000484/2012-L)

  • Eugenio Mancera

Pew Biomedical Schoolar Award

  • Clarissa J Nobile

Kamangar family endowed chair

  • Clarissa J Nobile

UC-MEXUS

  • Eugenio Mancera

CONACyT (CB-2016-01 282511)

  • Eugenio Mancera

Wellcome Trust Seed Award in Science (209077/Z/17/Z)

  • Eugenio Mancera

National Institute of Health (Ro1AI083311)

  • Alexander D Johnson

National Institute of Health (Ro1AI049187)

  • Alexander D Johnson

National Institute of Health (Ro1AI073289)

  • David R Andes

National Institute of Health (R35GM124594)

  • Clarissa J Nobile

National Institute of Health (R21AI125801)

  • Clarissa J Nobile

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Wisconsin, Madison (protocol MV1947).

Copyright

© 2021, Mancera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,260
    views
  • 370
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eugenio Mancera
  2. Isabel Nocedal
  3. Stephen Hammel
  4. Megha Gulati
  5. Kaitlin F Mitchell
  6. David R Andes
  7. Clarissa J Nobile
  8. Geraldine Butler
  9. Alexander D Johnson
(2021)
Evolution of the complex transcription network controlling biofilm formation in Candida species
eLife 10:e64682.
https://doi.org/10.7554/eLife.64682

Share this article

https://doi.org/10.7554/eLife.64682

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Julie N Chuong, Nadav Ben Nun ... David Gresham
    Research Article

    Copy number variants (CNVs) are an important source of genetic variation underlying rapid adaptation and genome evolution. Whereas point mutation rates vary with genomic location and local DNA features, the role of genome architecture in the formation and evolutionary dynamics of CNVs is poorly understood. Previously, we found the GAP1 gene in Saccharomyces cerevisiae undergoes frequent amplification and selection in glutamine-limitation. The gene is flanked by two long terminal repeats (LTRs) and proximate to an origin of DNA replication (autonomously replicating sequence, ARS), which likely promote rapid GAP1 CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we evolved engineered strains lacking either the adjacent LTRs, ARS, or all elements in glutamine-limited chemostats. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. Removal of local DNA elements significantly impacts the fitness effect of GAP1 CNVs and the rate of adaptation. In 177 CNV lineages, across all four strains, between 26% and 80% of all GAP1 CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, distal ones mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination can mediate gene amplification following de novo retrotransposon events. Our study reveals that template switching during DNA replication is a prevalent source of adaptive CNVs.

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.