7,8-dihydroxyflavone Modulates Bone Formation and Resorption and Ameliorates Ovariectomy-Induced Osteoporosis

  1. Fan Xue
  2. Zhenlei Zhao
  3. Yanpei Gu
  4. Jianxin Han
  5. Keqiang Ye  Is a corresponding author
  6. Ying Zhang  Is a corresponding author
  1. Zhejiang University, China
  2. Emory University School of Medicine, United States

Abstract

Imbalances in bone formation and resorption cause osteoporosis. Mounting evidence supports that brain-derived neurotrophic factor (BDNF) implicates in this process. 7,8-dihydroxyflavone (7,8-DHF), a plant-derived small molecular TrkB agonist, mimics the functions of BDNF. We show that both BDNF and 7,8-DHF promoted the proliferation, osteogenic differentiation and mineralization of MC3T3-E1 cells. These effects might be attributed to the activation of the Wnt/β-catenin signaling pathway as the expression of cyclin D1, phosphorylated-glycogen synthase kinase-3β (p-GSK3β), β-catenin, Runx2, Osterix and osteoprotegerin (OPG) were all significantly up-regulated. Knockdown of β-catenin restrained the up-regulation of Runx2 and Osterix stimulated by 7,8-DHF. In particular, blocking TrkB by its specific inhibitor K252a suppressed 7,8-DHF-induced osteoblastic proliferation, differentiation and expression of osteoblastogenic genes. Moreover, BDNF and 7,8-DHF repressed osteoclastic differentiation of RAW264.7 cells. The transcription factor c-fos and osteoclastic genes such as tartrate-resistant acid phosphatase (TRAP), matrix metalloprotein-9 (MMP-9), Adamts5 were inhibited by 7,8-DHF. More importantly, 7,8-DHF attenuated bone loss, improved trabecular microarchitecture, tibial biomechanical properties and bone biochemical indexes in an ovariectomy (OVX) rat model. The current work highlights the dual regulatory effects that 7,8-DHF exerts on bone remodeling.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Fan Xue

    Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhenlei Zhao

    Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yanpei Gu

    Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jianxin Han

    Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Keqiang Ye

    Emory University School of Medicine, Atlanta, United States
    For correspondence
    kye@emory.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Ying Zhang

    Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
    For correspondence
    yzhang@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8533-4138

Funding

Key Research and Development Program of Guangdong Province (2019B020212001)

  • Ying Zhang

The funders had role in data collection and interpretation.

Ethics

Animal experimentation: All of the animals were handled according to approved Institutional Animal Care and Use Committee (IACUC) protocols (Aproval No.: IACUC-20190318-03) of Zhejiang Chinese Medical University. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2021, Xue et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,883
    views
  • 290
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fan Xue
  2. Zhenlei Zhao
  3. Yanpei Gu
  4. Jianxin Han
  5. Keqiang Ye
  6. Ying Zhang
(2021)
7,8-dihydroxyflavone Modulates Bone Formation and Resorption and Ameliorates Ovariectomy-Induced Osteoporosis
eLife 10:e64872.
https://doi.org/10.7554/eLife.64872

Share this article

https://doi.org/10.7554/eLife.64872