1. Neuroscience
Download icon

Neural network of social interaction observation in marmosets

  1. Justine C Cléry  Is a corresponding author
  2. Yuki Hori
  3. David J Schaeffer
  4. Ravi S Menon
  5. Stefan Everling  Is a corresponding author
  1. Robarts Research Institute, The University of Western Ontario, Canada
  2. University of Pittsburg, United States
Research Article
  • Cited 0
  • Views 563
  • Annotations
Cite this article as: eLife 2021;10:e65012 doi: 10.7554/eLife.65012

Abstract

A crucial component of social cognition is to observe and understand the social interactions of other individuals. A promising nonhuman primate model for investigating the neural basis of social interaction observation is the common marmoset (Callithrix jacchus), a small New World primate that shares a rich social repertoire with humans. Here we used functional magnetic resonance imaging (fMRI) acquired at 9.4 Tesla to map the brain areas activated by social interaction observation in awake marmosets. We discovered a network of subcortical and cortical areas, predominately in the anterior lateral frontal and medial frontal cortex, that was specifically activated by social interaction observation. This network resembled that recently identified in Old World macaque monkeys (Sliwa and Freiwald, 2017). Our findings suggest that this network is largely conserved between New and Old World primates and support the use of marmosets for studying the neural basis of social cognition.

Data availability

The datasets generated during this study are available at https://github.com/JClery/Social_interaction_paper.

Article and author information

Author details

  1. Justine C Cléry

    Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
    For correspondence
    jclery@uwo.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1020-1845
  2. Yuki Hori

    Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. David J Schaeffer

    Department of Neurobiology, University of Pittsburg, Pittsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ravi S Menon

    Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Stefan Everling

    Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
    For correspondence
    severlin@uwo.ca
    Competing interests
    The authors declare that no competing interests exist.

Funding

Canadian Institutes of Health Research (FRN 148365)

  • Stefan Everling

Canada First Research Excellence Fund (BrainsCAN)

  • Stefan Everling

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental methods described were performed in accordance with the guidelines of the Canadian Council on Animal Care policy on the care and use of experimental animals and an ethics protocol #2017-114 approved by the Animal Care Committee of the University of Western Ontario.Animals were monitoring during the acquisition sessions by a veterinary technician.

Reviewing Editor

  1. Thorsten Kahnt, Northwestern University, United States

Publication history

  1. Received: November 18, 2020
  2. Accepted: March 29, 2021
  3. Accepted Manuscript published: March 31, 2021 (version 1)
  4. Version of Record published: April 6, 2021 (version 2)

Copyright

© 2021, Cléry et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 563
    Page views
  • 115
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Stanley Heinze
    Insight

    Fruit flies rely on an intricate neural pathway to process polarized light signals in order to inform their internal compass about the position of the Sun.

    1. Neuroscience
    Zachariah Bertels et al.
    Research Article

    Migraine is the third most prevalent disease worldwide but the mechanisms that underlie migraine chronicity are poorly understood. Cytoskeletal flexibility is fundamental to neuronal-plasticity and is dependent on dynamic microtubules. Histone-deacetylase-6 (HDAC6) decreases microtubule dynamics by deacetylating its primary substrate, α-tubulin. We use validated mouse models of migraine to show that HDAC6-inhibition is a promising migraine treatment and reveal an undiscovered cytoarchitectural basis for migraine chronicity. The human migraine trigger, nitroglycerin, produced chronic migraine-associated pain and decreased neurite growth in headache-processing regions, which were reversed by HDAC6 inhibition. Cortical spreading depression (CSD), a physiological correlate of migraine aura, also decreased cortical neurite growth, while HDAC6-inhibitor restored neuronal complexity and decreased CSD. Importantly, a calcitonin gene-related peptide receptor antagonist also restored blunted neuronal complexity induced by nitroglycerin. Our results demonstrate that disruptions in neuronal cytoarchitecture are a feature of chronic migraine, and effective migraine therapies might include agents that restore microtubule/neuronal plasticity.