Egr2 induction in SPNs of the ventrolateral striatum contributes to cocaine place preference in mice
Abstract
Drug addiction develops due to brain-wide plasticity within neuronal ensembles, mediated by dynamic gene expression. Though the most common approach to identify such ensembles relies on immediate early gene expression, little is known of how the activity of these genes is linked to modified behavior observed following repeated drug exposure. To address this gap, we present a broad-to-specific approach, beginning with a comprehensive investigation of brain-wide cocaine-driven gene expression, through the description of dynamic spatial patterns of gene induction in subregions of the striatum, and finally address functionality of region-specific gene induction in the development of cocaine preference. Our findings reveal differential cell-type specific dynamic transcriptional recruitment patterns within two subdomains of the dorsal striatum following repeated cocaine exposure. Furthermore, we demonstrate that induction of the IEG Egr2 in the ventrolateral striatum, as well as the cells within which it is expressed, are required for the development of cocaine seeking.
Data availability
Source data file for RNA-seq and smFISH experiments are available at NCBI GEO: GSE158588, and http://dx.doi.org/10.17632/p5tsv2wpmg.1.
-
RNA-seq of five brain structures after repeated exposure to cocaineNCBI Gene Expression Omnibus, GSE158588.
Article and author information
Author details
Funding
Israel Science Foundation (1062/18)
- Ami Citri
Brain and Behavior Research Foundation (18795)
- Ami Citri
German-Israeli Foundation for Scientific Research and Development (2299-2291.1/2011)
- Ami Citri
US-Isral Binational Science Foundation (2011266)
- Ami Citri
The Milton Rosenbaum Endowment Fund for Research in Psychiatry
- Ami Citri
Prusiner-Abramsky Research Award in Clinical and Basic Neuroscience
- Ami Citri
European Research Council (ERC 770951)
- Ami Citri
Israel Science Foundation (393/12)
- Ami Citri
Israel Science Foundation (1796/12)
- Ami Citri
Israel Science Foundation (2341/15)
- Ami Citri
The Israel Anti-Drug Administration
- Ami Citri
EU Marie Curie (PCIG13-GA-2013-618201)
- Ami Citri
National Institute for Psychobiology in Israel, Hebrew University of Jerusalem (109-15-16)
- Ami Citri
Adelis Award for Advances in Neuroscience
- Ami Citri
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All animal protocols (# NS-13-13660-3; NS-13-13895-3; NS-15-14326-3; NS-16-14644-2; NS-14667-3; NS-16-14856-3; NS-19-15753-3) were approved by the Institutional Animal Care and Use Committees at the Hebrew University of Jerusalem and were in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.
Copyright
© 2021, Mukherjee et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,569
- views
-
- 191
- downloads
-
- 12
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.
-
- Neuroscience
Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.