Egr2 induction in SPNs of the ventrolateral striatum contributes to cocaine place preference in mice

Abstract

Drug addiction develops due to brain-wide plasticity within neuronal ensembles, mediated by dynamic gene expression. Though the most common approach to identify such ensembles relies on immediate early gene expression, little is known of how the activity of these genes is linked to modified behavior observed following repeated drug exposure. To address this gap, we present a broad-to-specific approach, beginning with a comprehensive investigation of brain-wide cocaine-driven gene expression, through the description of dynamic spatial patterns of gene induction in subregions of the striatum, and finally address functionality of region-specific gene induction in the development of cocaine preference. Our findings reveal differential cell-type specific dynamic transcriptional recruitment patterns within two subdomains of the dorsal striatum following repeated cocaine exposure. Furthermore, we demonstrate that induction of the IEG Egr2 in the ventrolateral striatum, as well as the cells within which it is expressed, are required for the development of cocaine seeking.

Data availability

Source data file for RNA-seq and smFISH experiments are available at NCBI GEO: GSE158588, and http://dx.doi.org/10.17632/p5tsv2wpmg.1.

The following data sets were generated

Article and author information

Author details

  1. Diptendu Mukherjee

    Department of Biological Chemistry, Silberman Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Ben Jerry Gonzales

    Department of Biological Chemistry, Silberman Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Reut Ashwal-Fluss

    The Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Hagit Turm

    Department of Biological Chemistry, Silberman Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Maya Groysman

    The Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Ami Citri

    The Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    For correspondence
    ami.citri@mail.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9914-0278

Funding

Israel Science Foundation (1062/18)

  • Ami Citri

Brain and Behavior Research Foundation (18795)

  • Ami Citri

German-Israeli Foundation for Scientific Research and Development (2299-2291.1/2011)

  • Ami Citri

US-Isral Binational Science Foundation (2011266)

  • Ami Citri

The Milton Rosenbaum Endowment Fund for Research in Psychiatry

  • Ami Citri

Prusiner-Abramsky Research Award in Clinical and Basic Neuroscience

  • Ami Citri

European Research Council (ERC 770951)

  • Ami Citri

Israel Science Foundation (393/12)

  • Ami Citri

Israel Science Foundation (1796/12)

  • Ami Citri

Israel Science Foundation (2341/15)

  • Ami Citri

The Israel Anti-Drug Administration

  • Ami Citri

EU Marie Curie (PCIG13-GA-2013-618201)

  • Ami Citri

National Institute for Psychobiology in Israel, Hebrew University of Jerusalem (109-15-16)

  • Ami Citri

Adelis Award for Advances in Neuroscience

  • Ami Citri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal protocols (# NS-13-13660-3; NS-13-13895-3; NS-15-14326-3; NS-16-14644-2; NS-14667-3; NS-16-14856-3; NS-19-15753-3) were approved by the Institutional Animal Care and Use Committees at the Hebrew University of Jerusalem and were in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Copyright

© 2021, Mukherjee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,557
    views
  • 188
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Diptendu Mukherjee
  2. Ben Jerry Gonzales
  3. Reut Ashwal-Fluss
  4. Hagit Turm
  5. Maya Groysman
  6. Ami Citri
(2021)
Egr2 induction in SPNs of the ventrolateral striatum contributes to cocaine place preference in mice
eLife 10:e65228.
https://doi.org/10.7554/eLife.65228

Share this article

https://doi.org/10.7554/eLife.65228

Further reading

    1. Neuroscience
    John P Grogan, Matthias Raemaekers ... Sanjay G Manohar
    Research Article

    Motivation depends on dopamine, but might be modulated by acetylcholine which influences dopamine release in the striatum, and amplifies motivation in animal studies. A corresponding effect in humans would be important clinically, since anticholinergic drugs are frequently used in Parkinson’s disease, a condition that can also disrupt motivation. Reward and dopamine make us more ready to respond, as indexed by reaction times (RT), and move faster, sometimes termed vigour. These effects may be controlled by preparatory processes that can be tracked using electroencephalography (EEG). We measured vigour in a placebo-controlled, double-blinded study of trihexyphenidyl (THP), a muscarinic antagonist, with an incentivised eye movement task and EEG. Participants responded faster and with greater vigour when incentives were high, but THP blunted these motivational effects, suggesting that muscarinic receptors facilitate invigoration by reward. Preparatory EEG build-up (contingent negative variation [CNV]) was strengthened by high incentives and by muscarinic blockade, although THP reduced the incentive effect. The amplitude of preparatory activity predicted both vigour and RT, although over distinct scalp regions; frontal activity predicted vigour, whereas a larger, earlier, central component predicted RT. The incentivisation of RT was partly mediated by the CNV, though vigour was not. Moreover, the CNV mediated the drug’s effect on dampening incentives, suggesting that muscarinic receptors underlie the motivational influence on this preparatory activity. Taken together, these findings show that a muscarinic blocker impairs motivated action in healthy people, and that medial frontal preparatory neural activity mediates this for RT.

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.