Matrix-trapped viruses can prevent invasion of bacterial biofilms by colonizing cells

  1. Matthew C Bond
  2. Lucia Vidakovic
  3. Praveen K Singh
  4. Knut Drescher
  5. Carey D Nadell  Is a corresponding author
  1. Dartmouth, United States
  2. Max Planck Institute for Terrestrial Microbiology, Germany
  3. University of Basel, Switzerland

Abstract

Bacteriophages can be trapped in the matrix of bacterial biofilms, such that the cells inside them are protected. It is not known whether these phages are still infectious and whether they pose a threat to newly arriving bacteria. Here we address these questions using Escherichia coli and its lytic phage T7. Prior work has demonstrated that T7 phages are bound in the outermost curli polymer layers of the E. coli biofilm matrix. We show that these phages do remain viable and can kill colonizing cells that are T7-susceptible. If cells colonize a resident biofilm before phages do, we find that they can still be killed by phage exposure if it occurs soon thereafter. However, if colonizing cells are present on the biofilm long enough before phage exposure, they gain phage protection via envelopment within curli-producing clusters of the resident biofilm cells.

Data availability

Raw data for the entire study has been provided in the source data file with the re-submission

Article and author information

Author details

  1. Matthew C Bond

    Biological Sciences, Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lucia Vidakovic

    Systems and Synthetic Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5289-5163
  3. Praveen K Singh

    Systems and Synthetic Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0254-7400
  4. Knut Drescher

    University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7340-2444
  5. Carey D Nadell

    Biological Sciences, Dartmouth, Hanover, United States
    For correspondence
    carey.d.nadell@dartmouth.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1751-4895

Funding

National Science Foundation (MCB 1817342)

  • Carey D Nadell

National Science Foundation (IOS 2017879)

  • Carey D Nadell

National Institutes of Health (P30-DK117469)

  • Carey D Nadell

National Institutes of Health (2R01AI081838)

  • Carey D Nadell

Cystic Fibrosis Foundation (STANTO15RO)

  • Carey D Nadell

National Institutes of Health (P20-GM113132)

  • Carey D Nadell

Human Frontier Science Program (RGY0077/2020)

  • Carey D Nadell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wenying Shou, University College London, United Kingdom

Version history

  1. Received: December 1, 2020
  2. Accepted: July 8, 2021
  3. Accepted Manuscript published: July 9, 2021 (version 1)
  4. Version of Record published: August 6, 2021 (version 2)

Copyright

© 2021, Bond et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,587
    views
  • 357
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew C Bond
  2. Lucia Vidakovic
  3. Praveen K Singh
  4. Knut Drescher
  5. Carey D Nadell
(2021)
Matrix-trapped viruses can prevent invasion of bacterial biofilms by colonizing cells
eLife 10:e65355.
https://doi.org/10.7554/eLife.65355

Share this article

https://doi.org/10.7554/eLife.65355

Further reading

    1. Ecology
    Xueyou Li, William V Bleisch ... Xue-Long Jiang
    Research Article

    Spatial and temporal associations between sympatric species underpin biotic interactions, structure ecological assemblages, and sustain ecosystem functioning and stability. However, the resilience of interspecific spatiotemporal associations to human activity remains poorly understood, particularly in mountain forests where anthropogenic impacts are often pervasive. Here, we applied context-dependent Joint Species Distribution Models to a systematic camera-trap survey dataset from a global biodiversity hotspot in eastern Himalayas to understand how prominent human activities in mountain forests influence species associations within terrestrial mammal communities. We obtained 10,388 independent detections of 17 focal species (12 carnivores and five ungulates) from 322 stations over 43,163 camera days of effort. We identified a higher incidence of positive associations in habitats with higher levels of human modification (87%) and human presence (83%) compared to those located in habitats with lower human modification (64%) and human presence (65%) levels. We also detected a significant reduction of pairwise encounter time at increasing levels of human disturbance, corresponding to more frequent encounters between pairs of species. Our findings indicate that human activities can push mammals together into more frequent encounters and associations, which likely influences the coexistence and persistence of wildlife, with potential far-ranging ecological consequences.

    1. Ecology
    Lan Pang, Gangqi Fang ... Jianhua Huang
    Research Article

    The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell—teratocytes—that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.