Molecular characterization of projection neuron subtypes in the mouse olfactory bulb

  1. Sara Zeppilli
  2. Tobias Ackels
  3. Robin Attey
  4. Nell Klimpert
  5. Dr. Kimberly Ritola
  6. Stefan Boeing
  7. Anton Crombach
  8. Andreas T Schaefer
  9. Alexander Fleischmann  Is a corresponding author
  1. Brown University, United States
  2. The Francis Crick Institute, United Kingdom
  3. Howard Hughes Medical Institute, United States
  4. Inria, France

Abstract

Projection neurons (PNs) in the mammalian olfactory bulb (OB) receive input from the nose and project to diverse cortical and subcortical areas. Morphological and physiological studies have highlighted functional heterogeneity, yet no molecular markers have been described that delineate PN subtypes. Here, we used viral injections into olfactory cortex and fluorescent nucleus sorting to enrich PNs for high-throughput single nucleus and bulk RNA deep sequencing. Transcriptome analysis and RNA in situ hybridization identified distinct mitral and tufted cell populations with characteristic transcription factor network topology, cell adhesion and excitability-related gene expression. Finally, we describe a new computational approach for integrating bulk and snRNA-seq data, and provide evidence that different mitral cell populations preferentially project to different target regions. Together, we have identified potential molecular and gene regulatory mechanisms underlying PN diversity and provide new molecular entry points into studying the diverse functional roles of mitral and tufted cell subtypes.

Data availability

Raw single nucleus RNA sequencing data (large sn-R1/R2/R3 and targeted sn-PCx datasets) have been deposited in Gene Expression Omnibus (GEO) under the accession numbers GSE162654 and GSM5363097 respectively. Bulk RNA deep sequencing data has been deposited in GEO under the accession number GSE162655. The R and Python analysis scripts developed for this paper are available at the GitLab links https://gitlab.com/fleischmann-lab/papers/molecular-characterization-of-projection-neuron-subtypes-in-the-mouse-olfactory-bulb and https://gitlab.inria.fr/acrombac/projection-neurons-mouse-olfactory-bulb. Extensive computational tools for additional in-depth exploration of our data sets are available through our website: https://biologic.crick.ac.uk/OB_projection_neurons.

The following data sets were generated

Article and author information

Author details

  1. Sara Zeppilli

    Neuroscience, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  2. Tobias Ackels

    Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Robin Attey

    Institute of Neuroscience; Department of Psychology, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9652-8103
  4. Nell Klimpert

    Neuroscience, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  5. Dr. Kimberly Ritola

    Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  6. Stefan Boeing

    Bionformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0495-5659
  7. Anton Crombach

    Antenne Lyon La Doua, Inria, Villeurbanne, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2889-5120
  8. Andreas T Schaefer

    Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    Andreas T Schaefer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4677-8788
  9. Alexander Fleischmann

    Neuroscience, Brown University, Providence, United States
    For correspondence
    alexander_fleischmann@brown.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7956-9096

Funding

Cancer Research UK (FC001153)

  • Andreas T Schaefer

Wellcome Trust (FC001153)

  • Andreas T Schaefer

Deutsche Forschungsgemeinschaft

  • Tobias Ackels

National Institutes of Health (1R01DC017437-03)

  • Alexander Fleischmann

National Institutes of Health (1U19NS112953-01)

  • Alexander Fleischmann

National Institutes of Health (S10OD025181)

  • Alexander Fleischmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal protocols were performed in strict accordance with the recommendations approved by the Ethics Committee of the board of the Francis Crick Institute and the United Kingdom Home Office under the Animals (Scientific Procedures) Act 1986 (project license number PA2F6DA12), as well as Brown University's Institutional Animal Care and Use Committee (protocol number: 21-03-0004) followed by the guidelines provided by the National Institutes of Health.

Copyright

© 2021, Zeppilli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,316
    views
  • 625
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara Zeppilli
  2. Tobias Ackels
  3. Robin Attey
  4. Nell Klimpert
  5. Dr. Kimberly Ritola
  6. Stefan Boeing
  7. Anton Crombach
  8. Andreas T Schaefer
  9. Alexander Fleischmann
(2021)
Molecular characterization of projection neuron subtypes in the mouse olfactory bulb
eLife 10:e65445.
https://doi.org/10.7554/eLife.65445

Share this article

https://doi.org/10.7554/eLife.65445

Further reading

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.