Learning differentially shapes prefrontal and hippocampal activity during classical conditioning

  1. Jan L Klee  Is a corresponding author
  2. Bryan C Souza
  3. Francesco P Battaglia  Is a corresponding author
  1. Radboud University, Netherlands

Abstract

The ability to use sensory cues to inform goal directed actions is a critical component of behavior. To study how sounds guide anticipatory licking during classical conditioning, we employed high-density electrophysiological recordings from the hippocampal CA1 area and the prefrontal cortex (PFC) in mice. CA1 and PFC neurons undergo distinct learning dependent changes at the single cell level and maintain representations of cue identity at the population level. In addition, reactivation of task-related neuronal assemblies during hippocampal awake Sharp-Wave Ripples (aSWR) changed within individual sessions in CA1 and over the course of multiple sessions in PFC. Despite both areas being highly engaged and synchronized during the task, we found no evidence for coordinated single cell or assembly activity during conditioning trials or aSWR. Taken together, our findings support the notion that persistent firing and reactivation of task-related neural activity patterns in CA1 and PFC support learning during classical conditioning.

Data availability

All data are publicly available on the Donders Repository (https://doi.org/10.34973/hp7x-4241). Analysis scripts can be downloaded via GitHub (https://github.com/chanlukas/AATCstudy).

The following data sets were generated

Article and author information

Author details

  1. Jan L Klee

    Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
    For correspondence
    janlukasklee@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4988-5682
  2. Bryan C Souza

    Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1041-4624
  3. Francesco P Battaglia

    Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
    For correspondence
    fpbattaglia@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

Studienstiftung des Deutschen Volkes

  • Jan L Klee

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (612.001.853)

  • Bryan C Souza

NWA 'Bio-Art' project

  • Francesco P Battaglia

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was approved by the Central Commissie Dierproeven (CCD) in the Netherlands and conducted in accordance with the Experiments on Animals Act and the European Directive 2010/63/EU on animal research.

Copyright

© 2021, Klee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,210
    views
  • 341
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan L Klee
  2. Bryan C Souza
  3. Francesco P Battaglia
(2021)
Learning differentially shapes prefrontal and hippocampal activity during classical conditioning
eLife 10:e65456.
https://doi.org/10.7554/eLife.65456

Share this article

https://doi.org/10.7554/eLife.65456

Further reading

    1. Neuroscience
    Li Shen, Shuo Li ... Yi Jiang
    Research Article

    When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.

    1. Evolutionary Biology
    2. Neuroscience
    Gregor Belušič
    Insight

    The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.