Whole-brain connectivity atlas of glutamatergic and GABAergic neurons in the mouse dorsal and median raphe nuclei

  1. Zhengchao Xu
  2. Zhao Feng
  3. Mengting Zhao
  4. Qingtao Sun
  5. Lei Deng
  6. Xueyan Jia
  7. Tao Jiang
  8. Pan Luo
  9. Wu Chen
  10. Ayizuohere Tudi
  11. Jing Yuan
  12. Xiangning Li
  13. Hui Gong
  14. Qingming Luo
  15. Anan Li  Is a corresponding author
  1. Huazhong University of Science and Technology (HUST), China
  2. HUST-Suzhou Institute for Brainsmatics, China
  3. Hainan University, China

Abstract

The dorsal raphe nucleus (DR) and median raphe nucleus (MR) contain populations of glutamatergic and GABAergic neurons that regulate diverse behavioral functions. However, their whole-brain input-output circuits remain incompletely elucidated. We used viral tracing combined with fluorescence micro-optical sectioning tomography to generate a comprehensive whole-brain atlas of inputs and outputs of glutamatergic and GABAergic neurons in the DR and MR. We found that these neurons received inputs from similar upstream brain regions. The glutamatergic and GABAergic neurons in the same raphe nucleus had divergent projection patterns with differences in critical brain regions. Specifically, MR glutamatergic neurons projected to the lateral habenula through multiple pathways. Correlation and cluster analysis revealed that glutamatergic and GABAergic neurons in the same raphe nucleus received heterogeneous inputs and sent different collateral projections. This connectivity atlas further elucidates the anatomical architecture of the raphe nuclei, which could facilitate better understanding of their behavioral functions.

Data availability

The analysis results and data have been uploaded in the form of Supplementary Table.To present and share the TB-sized raw data, we developed an interactive website (http://atlas.brainsmatics.org/a/xu2011).

Article and author information

Author details

  1. Zhengchao Xu

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhao Feng

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Mengting Zhao

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2037-9129
  4. Qingtao Sun

    Biological platform, HUST-Suzhou Institute for Brainsmatics, Suzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Lei Deng

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xueyan Jia

    Computing platform, HUST-Suzhou Institute for Brainsmatics, Suzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Tao Jiang

    Imaging platform, HUST-Suzhou Institute for Brainsmatics, Suzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Pan Luo

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Wu Chen

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Ayizuohere Tudi

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Jing Yuan

    Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology (HUST), Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9050-4496
  12. Xiangning Li

    Wuhan National Laboratory for Opoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Hui Gong

    Wuhan National Lab for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5519-6248
  14. Qingming Luo

    School of Biomedical Engineering, Hainan University, Haikou, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Anan Li

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, China
    For correspondence
    aali@hust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5877-4813

Funding

National Natural Science Foundation of China (91749209)

  • Qingming Luo

National Natural Science Foundation of China (61890953)

  • Hui Gong

National Natural Science Foundation of China (91827901)

  • Anan Li

Science Fund for Creative Research Groups (61721092)

  • Qingming Luo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Care and Use Committee at HUST-Suzhou Institute For Brainsmatics (S20190601) and were conducted in accordance with relevant guidelines.

Copyright

© 2021, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,418
    views
  • 668
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhengchao Xu
  2. Zhao Feng
  3. Mengting Zhao
  4. Qingtao Sun
  5. Lei Deng
  6. Xueyan Jia
  7. Tao Jiang
  8. Pan Luo
  9. Wu Chen
  10. Ayizuohere Tudi
  11. Jing Yuan
  12. Xiangning Li
  13. Hui Gong
  14. Qingming Luo
  15. Anan Li
(2021)
Whole-brain connectivity atlas of glutamatergic and GABAergic neurons in the mouse dorsal and median raphe nuclei
eLife 10:e65502.
https://doi.org/10.7554/eLife.65502

Share this article

https://doi.org/10.7554/eLife.65502

Further reading

    1. Neuroscience
    Juan Carlos Boffi, Brice Bathellier ... Robert Prevedel
    Research Article

    Sound location coding has been extensively studied at the central nucleus of the mammalian inferior colliculus (CNIC), supporting a population code. However, this population code has not been extensively characterized on the single-trial level with simultaneous recordings or at other anatomical regions like the dorsal cortex of inferior colliculus (DCIC), which is relevant for learning-induced experience dependent plasticity. To address these knowledge gaps, here we made in two complementary ways large-scale recordings of DCIC populations from awake mice in response to sounds delivered from 13 different frontal horizontal locations (azimuths): volumetric two-photon calcium imaging with ~700 cells simultaneously recorded at a relatively low temporal resolution, and high-density single-unit extracellular recordings with ~20 cells simultaneously recorded at a high temporal resolution. Independent of the method, the recorded DCIC population responses revealed substantial trial-to-trial variation (neuronal noise) which was significantly correlated across pairs of neurons (noise correlations) in the passively listening condition. Nevertheless, decoding analysis supported that these noisy response patterns encode sound location on the single-trial basis, reaching errors that match the discrimination ability of mice. The detected noise correlations contributed to minimize the error of the DCIC population code of sound azimuth. Altogether these findings point out that DCIC can encode sound location in a similar format to what has been proposed for CNIC, opening exciting questions about how noise correlations could shape this code in the context of cortico-collicular input and experience-dependent plasticity.

    1. Neuroscience
    Selene Seoyun Lee, Livia Civitelli, Laura Parkkinen
    Research Article

    The alpha-synuclein (αSyn) seeding amplification assay (SAA) that allows the generation of disease-specific in vitro seeded fibrils (SAA fibrils) is used as a research tool to study the connection between the structure of αSyn fibrils, cellular seeding/spreading, and the clinicopathological manifestations of different synucleinopathies. However, structural differences between human brain-derived and SAA αSyn fibrils have been recently highlighted. Here, we characterize the biophysical properties of the human brain-derived αSyn fibrils from the brains of patients with Parkinson’s disease with and without dementia (PD, PDD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and compare them to the ‘model’ SAA fibrils. We report that the brain-derived αSyn fibrils show distinct biochemical profiles, which were not replicated in the corresponding SAA fibrils. Furthermore, the brain-derived αSyn fibrils from all synucleinopathies displayed a mixture of ‘straight’ and ‘twisted’ microscopic structures. However, the PD, PDD, and DLB SAA fibrils had a ’straight’ structure, whereas MSA SAA fibrils showed a ‘twisted’ structure. Finally, the brain-derived αSyn fibrils from all four synucleinopathies were phosphorylated (S129). Interestingly, phosphorylated αSyn were carried over to the PDD and DLB SAA fibrils. Our findings demonstrate the limitation of the SAA fibrils modeling the brain-derived αSyn fibrils and pay attention to the necessity of deepening the understanding of the SAA fibrillation methodology.