Dwarf open reading frame (DWORF) is a direct activator of the sarcoplasmic reticulum calcium pump SERCA

Abstract

The sarcoplasmic reticulum calcium pump SERCA plays a critical role in the contraction-relaxation cycle of muscle. In cardiac muscle, SERCA is regulated by the inhibitor phospholamban. A new regulator, dwarf open reading frame (DWORF), has been reported to displace phospholamban from SERCA. Here, we show that DWORF is a direct activator of SERCA, increasing its turnover rate in the absence of phospholamban. Measurement of in-cell calcium dynamics supports this observation and demonstrates that DWORF increases SERCA-dependent calcium reuptake. These functional observations reveal opposing effects of DWORF activation and phospholamban inhibition of SERCA. To gain mechanistic insight into SERCA activation, fluorescence resonance energy transfer experiments revealed that DWORF has a higher affinity for SERCA in the presence of calcium. Molecular modeling and molecular dynamics simulations provide a model for DWORF activation of SERCA, where DWORF modulates the membrane bilayer and stabilizes the conformations of SERCA that predominate during elevated cytosolic calcium.

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. M'Lynn E Fisher

    Biochemistry, University of Alberta, Edmonton, Canada
    Competing interests
    No competing interests declared.
  2. Elisa Bovo

    Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  3. Rodrigo Aguayo-Ortiz

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  4. Ellen E Cho

    Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, United States
    Competing interests
    No competing interests declared.
  5. Marsha P Pribadi

    Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  6. Michael P Dalton

    Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5296-5099
  7. Nishadh Rathod

    Biochemistry, University of Alberta, Edmonton, Canada
    Competing interests
    No competing interests declared.
  8. M Joanne Lemieux

    Biochemistry, University of Alberta, Edmonton, Canada
    Competing interests
    M Joanne Lemieux, Reviewing editor, eLife.
  9. L Michel Espinoza-Fonseca

    Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  10. Seth L Robia

    Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1193-9510
  11. Aleksey V Zima

    Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  12. Howard S Young

    Biochemistry, University of Alberta, Edmonton, Canada
    For correspondence
    hyoung@ualberta.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5990-8422

Funding

National Institutes of Health (R01HL092321)

  • Seth L Robia

National Institutes of Health (R01HL092321)

  • Howard S Young

National Institutes of Health (R01HL143816)

  • Seth L Robia

National Institutes of Health (R01HL143816)

  • Howard S Young

National Institutes of Health (R01GM120142)

  • L Michel Espinoza-Fonseca

National Institutes of Health (R01HL148068)

  • L Michel Espinoza-Fonseca

National Institutes of Health (R01HL130231)

  • Aleksey V Zima

Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-06478)

  • M Joanne Lemieux

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Fisher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,637
    views
  • 346
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. M'Lynn E Fisher
  2. Elisa Bovo
  3. Rodrigo Aguayo-Ortiz
  4. Ellen E Cho
  5. Marsha P Pribadi
  6. Michael P Dalton
  7. Nishadh Rathod
  8. M Joanne Lemieux
  9. L Michel Espinoza-Fonseca
  10. Seth L Robia
  11. Aleksey V Zima
  12. Howard S Young
(2021)
Dwarf open reading frame (DWORF) is a direct activator of the sarcoplasmic reticulum calcium pump SERCA
eLife 10:e65545.
https://doi.org/10.7554/eLife.65545

Share this article

https://doi.org/10.7554/eLife.65545

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.