KLF10 integrates circadian timing and sugar signaling to coordinate hepatic metabolism

  1. Anthony A Ruberto
  2. Aline Gréchez-Cassiau
  3. Sophie Guérin
  4. Luc Martin
  5. Johana S Revel
  6. Mohamed Mehiri
  7. Malayannan Subramaniam
  8. Franck Delaunay
  9. Michèle Teboul  Is a corresponding author
  1. Université Côte d'Azur, France
  2. Université Côte d'Azur, CNRS, Inserm, France
  3. Mayo Clinic, United States

Abstract

The mammalian circadian timing system and metabolism are highly interconnected, and disruption of this coupling is associated with negative health outcomes. Krüppel-like factors (KLFs) are transcription factors that govern metabolic homeostasis in various organs. Many KLFs show a circadian expression in the liver. Here, we show that the loss of the clock-controlled KLF10 in hepatocytes results in extensive reprogramming of the mouse liver circadian transcriptome, which in turn, alters the temporal coordination of pathways associated with energy metabolism. We also show that glucose and fructose induce Klf10, which helps mitigate glucose intolerance and hepatic steatosis in mice challenged with a sugar beverage. Functional genomics further reveal that KLF10 target genes are primarily involved in central carbon metabolism. Together, these findings show that in the liver, KLF10 integrates circadian timing and sugar metabolism related signaling, and serves as a transcriptional brake that protects against the deleterious effects of increased sugar consumption.

Data availability

Sequencing data have been deposited in European Nucleotide Archive under accession codes PRJEB39035, 696 PRJEB39036, PRJEB40195.All data generated or annalysed during this study are included in the manuscript and supplemental files. Source data files have been provided for figures 1-7.

The following data sets were generated

Article and author information

Author details

  1. Anthony A Ruberto

    Institut de Biologie Valrose, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Aline Gréchez-Cassiau

    Institut de Biologie Valrose, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sophie Guérin

    Institut de Biologie Valrose, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Luc Martin

    iBV, Université Côte d'Azur, CNRS, Inserm, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5725-3955
  5. Johana S Revel

    Institut de Chimie de Nice, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Mohamed Mehiri

    Institut de Chimie de Nice, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Malayannan Subramaniam

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Franck Delaunay

    Institut de Biologie Valrose, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4927-1701
  9. Michèle Teboul

    Institut de Biologie Valrose, Université Côte d'Azur, Nice, France
    For correspondence
    Michele.Teboul@univ-cotedazur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3418-4384

Funding

Agence Nationale de la Recherche (ANR-15-CE14-0016-01)

  • Franck Delaunay
  • Michèle Teboul

Agence Nationale de la Recherche (ANR-18-CE14-0019-02)

  • Franck Delaunay
  • Michèle Teboul

Agence Nationale de la Recherche (ANR-11-LABX-0028-01)

  • Anthony A Ruberto
  • Franck Delaunay
  • Michèle Teboul

Agence Nationale de la Recherche (ANR-15-IDEX-01)

  • Franck Delaunay
  • Michèle Teboul

Canceropole Provence Cote d'Azur (MetaboCell)

  • Mohamed Mehiri

Universite Cote d'Azur (ATER)

  • Johana S Revel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were approved by the local committee for animal ethics Comité Institutionnel d'Éthique Pour l'Animal de Laboratoire (CIEPAL-Azur; Authorized protocols: PEA 244 and 557) and conducted in accordance with the CNRS and INSERM institutional guidelines.

Reviewing Editor

  1. Peter Tontonoz, University of California, Los Angeles, United States

Publication history

  1. Received: December 8, 2020
  2. Preprint posted: December 23, 2020 (view preprint)
  3. Accepted: August 15, 2021
  4. Accepted Manuscript published: August 17, 2021 (version 1)
  5. Version of Record published: September 1, 2021 (version 2)

Copyright

© 2021, Ruberto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 942
    Page views
  • 179
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anthony A Ruberto
  2. Aline Gréchez-Cassiau
  3. Sophie Guérin
  4. Luc Martin
  5. Johana S Revel
  6. Mohamed Mehiri
  7. Malayannan Subramaniam
  8. Franck Delaunay
  9. Michèle Teboul
(2021)
KLF10 integrates circadian timing and sugar signaling to coordinate hepatic metabolism
eLife 10:e65574.
https://doi.org/10.7554/eLife.65574

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Liangyu Zhang, Weston T Stauffer ... Abby F Dernburg
    Research Article

    Meiotic chromosome segregation relies on synapsis and crossover recombination between homologous chromosomes. These processes require multiple steps that are coordinated by the meiotic cell cycle and monitored by surveillance mechanisms. In diverse species, failures in chromosome synapsis can trigger a cell cycle delay and/or lead to apoptosis. How this key step in 'homolog engagement' is sensed and transduced by meiotic cells is unknown. Here we report that in C. elegans, recruitment of the Polo-like kinase PLK-2 to the synaptonemal complex triggers phosphorylation and inactivation of CHK-2, an early meiotic kinase required for pairing, synapsis, and double-strand break induction. Inactivation of CHK-2 terminates double-strand break formation and enables crossover designation and cell cycle progression. These findings illuminate how meiotic cells ensure crossover formation and accurate chromosome segregation.

    1. Cell Biology
    2. Physics of Living Systems
    Christa Ringers, Stephan Bialonski ... Nathalie Jurisch-Yaksi
    Research Article

    Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right nose, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.