Inbreeding in a dioecious plant has sex- and population origin-specific effects on its interactions with pollinators

Abstract

We study the effects of inbreeding in a dioecious plant on its interaction with pollinating insects and test whether the magnitude of such effects is shaped by plant individual sex and the evolutionary histories of plant populations. We recorded spatial, scent, colour and rewarding flower traits as well as pollinator visitation rates in experimentally inbred and outbred, male and female Silene latifolia plants from European and North American populations differing in their evolutionary histories. We found that inbreeding specifically impairs spatial flower traits and floral scent. Our results support that sex-specific selection and gene expression may have partially magnified these inbreeding costs for females, and that divergent evolutionary histories altered the genetic architecture underlying inbreeding effects across population origins. Moreover, the results indicate that inbreeding effects on floral scent may have a huge potential to disrupt interactions among plants and nocturnal moth pollinators, which are mediated by elaborate chemical communication.

Data availability

All datasets and analyses supporting this article have been deposited to Dryad, under the DOI 10.5061/dryad.612jm643d

The following data sets were generated

Article and author information

Author details

  1. Karin Schrieber

    Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
    For correspondence
    kschrieber@ecology.uni-kiel.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7181-2741
  2. Sarah Catherine Paul

    Department of Chemical Ecology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Levke Valena Höche

    Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrea Cecilia Salas

    Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Rabi Didszun

    Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jakob Mößnang

    Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Caroline Müller

    Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexandra Erfmeier

    Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1002-9216
  9. Elisabeth Eilers

    Department of Chemical Ecology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Kiel University, Faculty of Mathematics and Natural Sciences, program for promotion of young female scientists

  • Karin Schrieber
  • Alexandra Erfmeier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Schrieber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,863
    views
  • 187
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karin Schrieber
  2. Sarah Catherine Paul
  3. Levke Valena Höche
  4. Andrea Cecilia Salas
  5. Rabi Didszun
  6. Jakob Mößnang
  7. Caroline Müller
  8. Alexandra Erfmeier
  9. Elisabeth Eilers
(2021)
Inbreeding in a dioecious plant has sex- and population origin-specific effects on its interactions with pollinators
eLife 10:e65610.
https://doi.org/10.7554/eLife.65610

Share this article

https://doi.org/10.7554/eLife.65610

Further reading

    1. Ecology
    Laura Fargeot, Camille Poesy ... Blanchet Simon
    Research Article

    Understanding the relationships between biodiversity and ecosystem functioning stands as a cornerstone in ecological research. Extensive evidence now underscores the profound impact of species loss on the stability and dynamics of ecosystem functions. However, it remains unclear whether the loss of genetic diversity within key species yields similar consequences. Here, we delve into the intricate relationship between species diversity, genetic diversity, and ecosystem functions across three trophic levels – primary producers, primary consumers, and secondary consumers – in natural aquatic ecosystems. Our investigation involves estimating species diversity and genome-wide diversity – gauged within three pivotal species – within each trophic level, evaluating seven key ecosystem functions, and analyzing the magnitude of the relationships between biodiversity and ecosystem functions (BEFs). We found that, overall, the absolute effect size of genetic diversity on ecosystem functions mirrors that of species diversity in natural ecosystems. We nonetheless unveil a striking dichotomy: while genetic diversity was positively correlated with various ecosystem functions, species diversity displays a negative correlation with these functions. These intriguing antagonist effects of species and genetic diversity persist across the three trophic levels (underscoring its systemic nature), but were apparent only when BEFs were assessed within trophic levels rather than across them. This study reveals the complexity of predicting the consequences of genetic and species diversity loss under natural conditions, and emphasizes the need for further mechanistic models integrating these two facets of biodiversity.

    1. Ecology
    2. Evolutionary Biology
    Justine Boutry, Océane Rieu ... Fréderic Thomas
    Research Article

    While host phenotypic manipulation by parasites is a widespread phenomenon, whether tumors, which can be likened to parasite entities, can also manipulate their hosts is not known. Theory predicts that this should nevertheless be the case, especially when tumors (neoplasms) are transmissible. We explored this hypothesis in a cnidarian Hydra model system, in which spontaneous tumors can occur in the lab, and lineages in which such neoplastic cells are vertically transmitted (through host budding) have been maintained for over 15 years. Remarkably, the hydras with long-term transmissible tumors show an unexpected increase in the number of their tentacles, allowing for the possibility that these neoplastic cells can manipulate the host. By experimentally transplanting healthy as well as neoplastic tissues derived from both recent and long-term transmissible tumors, we found that only the long-term transmissible tumors were able to trigger the growth of additional tentacles. Also, supernumerary tentacles, by permitting higher foraging efficiency for the host, were associated with an increased budding rate, thereby favoring the vertical transmission of tumors. To our knowledge, this is the first evidence that, like true parasites, transmissible tumors can evolve strategies to manipulate the phenotype of their host.