1. Ecology
  2. Evolutionary Biology
Download icon

Inbreeding in a dioecious plant has sex- and population origin-specific effects on its interactions with pollinators

Research Article
  • Cited 0
  • Views 1,049
  • Annotations
Cite this article as: eLife 2021;10:e65610 doi: 10.7554/eLife.65610

Abstract

We study the effects of inbreeding in a dioecious plant on its interaction with pollinating insects and test whether the magnitude of such effects is shaped by plant individual sex and the evolutionary histories of plant populations. We recorded spatial, scent, colour and rewarding flower traits as well as pollinator visitation rates in experimentally inbred and outbred, male and female Silene latifolia plants from European and North American populations differing in their evolutionary histories. We found that inbreeding specifically impairs spatial flower traits and floral scent. Our results support that sex-specific selection and gene expression may have partially magnified these inbreeding costs for females, and that divergent evolutionary histories altered the genetic architecture underlying inbreeding effects across population origins. Moreover, the results indicate that inbreeding effects on floral scent may have a huge potential to disrupt interactions among plants and nocturnal moth pollinators, which are mediated by elaborate chemical communication.

Data availability

All datasets and analyses supporting this article have been deposited to Dryad, under the DOI 10.5061/dryad.612jm643d

The following data sets were generated

Article and author information

Author details

  1. Karin Schrieber

    Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
    For correspondence
    kschrieber@ecology.uni-kiel.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7181-2741
  2. Sarah Catherine Paul

    Department of Chemical Ecology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Levke Valena Höche

    Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrea Cecilia Salas

    Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Rabi Didszun

    Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jakob Mößnang

    Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Caroline Müller

    Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexandra Erfmeier

    Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1002-9216
  9. Elisabeth Eilers

    Department of Chemical Ecology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Kiel University, Faculty of Mathematics and Natural Sciences, program for promotion of young female scientists

  • Karin Schrieber
  • Alexandra Erfmeier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Youngsung Joo, Chungbuk National University, Republic of Korea

Publication history

  1. Received: December 9, 2021
  2. Accepted: May 9, 2021
  3. Accepted Manuscript published: May 14, 2021 (version 1)
  4. Version of Record published: May 27, 2021 (version 2)
  5. Version of Record updated: June 3, 2021 (version 3)

Copyright

© 2021, Schrieber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,049
    Page views
  • 68
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    Brendan Cornwell et al.
    Short Report Updated

    Climate change is dramatically changing ecosystem composition and productivity, leading scientists to consider the best approaches to map natural resistance and foster ecosystem resilience in the face of these changes. Here, we present results from a large-scale experimental assessment of coral bleaching resistance, a critical trait for coral population persistence as oceans warm, in 221 colonies of the coral Acropora hyacinthus across 37 reefs in Palau. We find that bleaching-resistant individuals inhabit most reefs but are found more often in warmer microhabitats. Our survey also found wide variation in symbiont concentration among colonies, and that colonies with lower symbiont load tended to be more bleaching-resistant. By contrast, our data show that low symbiont load comes at the cost of lower growth rate, a tradeoff that may operate widely among corals across environments. Corals with high bleaching resistance have been suggested as a source for habitat restoration or selective breeding in order to increase coral reef resilience to climate change. Our maps show where these resistant corals can be found, but the existence of tradeoffs with heat resistance may suggest caution in unilateral use of this one trait in restoration.

    1. Ecology
    Line K Bay, Emily J Howells
    Insight

    The ability of corals to adapt to global warming may involve trade-offs among the traits that influence their success as the foundational species of coral reefs.