CD8+ T cell self-tolerance permits responsiveness but limits tissue damage

  1. Emily N Truckenbrod
  2. Kristina S Burrack
  3. Todd P Knutson
  4. Henrique Borges da Silva
  5. Katharine E Block
  6. Stephen D O'Flanagan
  7. Katie R Stagliano
  8. Arthur A Hurwitz
  9. Ross B Fulton
  10. Kristin R Renkema  Is a corresponding author
  11. Stephen C Jameson  Is a corresponding author
  1. University of Minnesota Medical School, United States
  2. NIH, United States
  3. Agentus Therapeutics, United States
  4. Grand Valley State University, United States

Abstract

Self-specific CD8+ T cells can escape clonal deletion, but the properties and capabilities of such cells in a physiological setting are unclear. We characterized polyclonal CD8+ T cells specific for the melanocyte antigen tyrosinase-related protein 2 (Trp2) in mice expressing or lacking this enzyme (due to deficiency in Dct, which encodes Trp2). Phenotypic and gene expression profiles of pre-immune Trp2/Kb-specific cells were similar; the size of this population was only slightly reduced in wild-type (WT) compared to Dct-deficient (Dct-/-) mice. Despite comparable initial responses to Trp2 immunization, WT Trp2/Kb-specific cells showed blunted expansion and less readily differentiated into a CD25+ proliferative population. Functional self-tolerance clearly emerged when assessing immunopathology: adoptively transferred WT Trp2/Kb-specific cells mediated vitiligo much less efficiently. Hence, CD8+ T cell self-specificity is poorly predicted by precursor frequency, phenotype or even initial responsiveness, while deficient activation-induced CD25 expression and other gene expression characteristics may help to identify functionally tolerant cells.

Data availability

NextGen sequencing data has being deposited at GEO: Code GSE171221.

The following data sets were generated

Article and author information

Author details

  1. Emily N Truckenbrod

    Center for Immunology, University of Minnesota Medical School, Minneapolis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3819-6307
  2. Kristina S Burrack

    Center for Immunology, University of Minnesota Medical School, Minneapolis, United States
    Competing interests
    No competing interests declared.
  3. Todd P Knutson

    Minnesota Supercomputing Institute, University of Minnesota Medical School, Minneapolis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8431-9964
  4. Henrique Borges da Silva

    Center for Immunology, University of Minnesota Medical School, Minneapolis, United States
    Competing interests
    No competing interests declared.
  5. Katharine E Block

    Center for Immunology, University of Minnesota Medical School, Minneapolis, United States
    Competing interests
    No competing interests declared.
  6. Stephen D O'Flanagan

    Center for Immunology, University of Minnesota Medical School, Minneapolis, United States
    Competing interests
    No competing interests declared.
  7. Katie R Stagliano

    NIAID, NIH, Bethesda, United States
    Competing interests
    No competing interests declared.
  8. Arthur A Hurwitz

    Immunology, Agentus Therapeutics, Lexington, United States
    Competing interests
    Arthur A Hurwitz, Arthur A Hurwitz is affiliated with AgenTus Therapeutics, Inc. The author has no financial interests to declare..
  9. Ross B Fulton

    Center for Immunology, University of Minnesota Medical School, Minneapolis, United States
    Competing interests
    Ross B Fulton, Ross B. Fulton is affiliated with HiFiBio, Inc. The author has no financial interests to declare..
  10. Kristin R Renkema

    Grand Valley State University, Allendale, United States
    For correspondence
    renkemak@gvsu.edu
    Competing interests
    No competing interests declared.
  11. Stephen C Jameson

    Center for Immunology, University of Minnesota Medical School, Minneapolis, United States
    For correspondence
    james024@umn.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9137-1146

Funding

National Institute of Allergy and Infectious Diseases (R01AI140631)

  • Stephen C Jameson

National Institute of Allergy and Infectious Diseases (P01AI035296)

  • Stephen C Jameson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the NIH Guide for the Care and Use of Laboratory Animals and handled according to protocols approved but the University of Minnesota IACUC (#1709-35136A and #2007-38243A).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,498
    views
  • 241
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emily N Truckenbrod
  2. Kristina S Burrack
  3. Todd P Knutson
  4. Henrique Borges da Silva
  5. Katharine E Block
  6. Stephen D O'Flanagan
  7. Katie R Stagliano
  8. Arthur A Hurwitz
  9. Ross B Fulton
  10. Kristin R Renkema
  11. Stephen C Jameson
(2021)
CD8+ T cell self-tolerance permits responsiveness but limits tissue damage
eLife 10:e65615.
https://doi.org/10.7554/eLife.65615

Share this article

https://doi.org/10.7554/eLife.65615

Further reading

    1. Immunology and Inflammation
    Aryeh Solomon, Noa Bossel Ben-Moshe ... Roi Avraham
    Research Article

    Trained immunity (TI) is the process wherein innate immune cells gain functional memory upon exposure to specific ligands or pathogens, leading to augmented inflammatory responses and pathogen clearance upon secondary exposure. While the differentiation of hematopoietic stem cells (HSCs) and reprogramming of bone marrow (BM) progenitors are well-established mechanisms underpinning durable TI protection, remodeling of the cellular architecture within the tissue during TI remains underexplored. Here, we study the effects of peritoneal Bacillus Calmette–Guérin (BCG) administration to find TI-mediated protection in the spleen against a subsequent heterologous infection by the Gram-negative pathogen Salmonella Typhimurium (S.Tm). Utilizing single cell RNA-sequencing and flow cytometry, we discerned STAT1-regulated genes in TI-associated resident and recruited splenic myeloid populations. The temporal dynamics of TI were further elucidated, revealing both early and delayed myeloid subsets with time-dependent, cell-type-specific STAT1 signatures. Using lineage tracing, we find that tissue-resident red pulp macrophages (RPM), initially depleted by BCG exposure, are restored from both tissue-trained, self-renewing macrophages and from bone marrow-derived progenitors, fostering long lasting local defense. Early inhibition of STAT1 activation, using specific JAK-STAT inhibitors, reduces both RPM loss and recruitment of trained monocytes. Our study suggests a temporal window soon after BCG vaccination, in which STAT1-dependent activation of long-lived resident cells in the tissue mediates localized protection.

    1. Immunology and Inflammation
    Yalan Jiang, Pingping He ... Xiaoou Shan
    Research Article

    Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the potential effects of EUG on T1DM had not been investigated. In this study, we established the streptozotocin (STZ)-induced T1DM mouse model in vivo and STZ-induced pancreatic β cell MIN6 cell model in vitro to investigate the protective effects of EUG on T1DM, and tried to elucidate its potential mechanism. Our findings demonstrated that the intervention of EUG could effectively induce the activation of nuclear factor E2-related factor 2 (NRF2), leading to an up-regulation in the expressions of downstream proteins NQO1 and HMOX1, which are regulated by NRF2. Moreover, this intervention exhibited a significant amelioration in pancreatic β cell damage associated with T1DM, accompanied by an elevation in insulin secretion and a reduction in the expression levels of apoptosis and oxidative stress-related markers. Furthermore, ML385, an NRF2 inhibitor, reversed these effects of EUG. The present study suggested that EUG exerted protective effects on pancreatic β cells in T1DM by attenuating apoptosis and oxidative stress through the activation of the NRF2 signaling pathway. Consequently, EUG holds great promise as a potential therapeutic candidate for T1DM.