Distinct protocerebral neuropils associated with attractive and aversive female-produced odorants in the male moth brain

  1. Jonas Hansen Kymre
  2. XiaoLan Liu
  3. Elena Ian
  4. Christoffer Nerland Berge
  5. GuiRong Wang
  6. Bente G Berg
  7. XinCheng Zhao  Is a corresponding author
  8. Xi Chu  Is a corresponding author
  1. Norwegian University of Science and Technology, Norway
  2. State Key Laboratory for Biology of Plant Disease and Insect Pests, Chinese Academy of Agricultural Sciences, China
  3. Institute of Plant Protection, Chinese Academy of Agricultural Sciences, China
  4. Henan Agricultural University, China

Abstract

The pheromone system of heliothine moths is an optimal model for studying principles underlying higher-order olfactory processing. In Helicoverpa armigera, three male-specific glomeruli receive input about three female-produced signals, the primary pheromone component, serving as an attractant, and two minor constituents, serving a dual function, i.e. attraction versus inhibition of attraction. From the antennal-lobe glomeruli, the information is conveyed to higher olfactory centers, including the lateral protocerebrum, via three main paths – of which the medial tract is the most prominent. In this study, we traced physiologically identified medial-tract projection neurons from each of the three male‑specific glomeruli with the aim of mapping their terminal branches in the lateral protocerebrum. Our data suggest that the neurons’ wide-spread projections are organized according to behavioral significance, including a spatial separation of signals representing attraction versus inhibition – however, with a unique capacity of switching behavioral consequence based on the amount of the minor components.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jonas Hansen Kymre

    Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  2. XiaoLan Liu

    Institute of Plant Protection, State Key Laboratory for Biology of Plant Disease and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Elena Ian

    Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Christoffer Nerland Berge

    Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. GuiRong Wang

    State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Bente G Berg

    Department of Psychology, Chemosensory lab, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. XinCheng Zhao

    Department of Entomology, Henan Agricultural University, Zhengzhou, China
    For correspondence
    xincheng@henau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9471-2222
  8. Xi Chu

    Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
    For correspondence
    xi.chu@ntnu.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0889-6345

Funding

Norges Forskningsråd (287052)

  • Bente G Berg

National Natural Science Foundation of China (31861133019)

  • GuiRong Wang

Science and technology innovation talents in University of Henan province (19HASTIT011)

  • XinCheng Zhao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: According to Norwegian law of animal welfare, there are no restrictions regarding experimental use of Lepidoptera.

Copyright

© 2021, Kymre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,441
    views
  • 163
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonas Hansen Kymre
  2. XiaoLan Liu
  3. Elena Ian
  4. Christoffer Nerland Berge
  5. GuiRong Wang
  6. Bente G Berg
  7. XinCheng Zhao
  8. Xi Chu
(2021)
Distinct protocerebral neuropils associated with attractive and aversive female-produced odorants in the male moth brain
eLife 10:e65683.
https://doi.org/10.7554/eLife.65683

Share this article

https://doi.org/10.7554/eLife.65683

Further reading

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.