Sushi domain-containing protein 4 controls synaptic plasticity and motor learning

Abstract

Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Inés Gonzalez-Calvo

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Keerthana Iyer

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Mélanie Carquin

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Anouar Khayachi

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Fernando A Giuliani

    Institut de Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Séverine M Sigoillot

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Jean Vincent

    Institut Biology Paris Seine, Sorbonne University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Martial Séveno

    BioCampus Montpellier, CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Maxime Veleanu

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Sylvana Tahraoui

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Mélanie Albert

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Oana Vigy

    BioCampus Montpellier, CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Célia Bosso-Lefèvre

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Yann Nadjar

    IBENS, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Andréa Dumoulin

    IBENS - Biologie, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Antoine Triller

    IBENS - Biologie, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  17. JeanLouis Bessereau

    Institut NeuroMyoGene, University of Lyon - INSERM - CNRS, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3088-7621
  18. Laure Rondi-Reig

    Institut de Biologie Paris Seine (IBPS) - Neuroscience, Université Pierre et Marie Curie (UPMC), Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1006-0501
  19. Philippe Isope

    Institut de Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0630-5935
  20. Fekrije Selimi

    CIRB, Collège de France, Paris, France
    For correspondence
    fekrije.selimi@college-de-france.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7704-5897

Funding

ATIP-AVENIR (RSE11005JSA)

  • Fekrije Selimi

Labex MEMOLIFE (ANR-10-LABX-54 MEMO LIFE)

  • Keerthana Iyer

Ecole des Neurosciences de Paris

  • Keerthana Iyer

Labex BIOPSY (ANR-11-IDEX-0004-02)

  • Laure Rondi-Reig

Idex PSL (ANR-10-IDEX-0001-02 PSL*)

  • Fekrije Selimi

Agence Nationale de la Recherche (ANR 9139SAMA90010901)

  • Fekrije Selimi

Agence Nationale de la Recherche (ANR 9139SAMA90010901)

  • Philippe Isope

Agence Nationale de la Recherche (ANR-15-CE37-0001-01 CeMod)

  • Fekrije Selimi

Agence Nationale de la Recherche (ANR-15-CE37-0001-01 CeMod)

  • Philippe Isope

Fondation pour la Recherche Médicale (DEQ20150331748)

  • Fekrije Selimi

Fondation pour la Recherche Médicale (DEQ20140329514)

  • Philippe Isope

H2020 European Research Council (SynID 724601)

  • Fekrije Selimi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Megan R Carey, Champalimaud Foundation, Portugal

Ethics

Animal experimentation: All animal protocols were approved by the Comité Regional d'Ethique en Experimentation Animale (no. 00057.01) and animals were housed in authorized facilities of the CIRB (# C75 05 12).

Version history

  1. Received: December 13, 2020
  2. Accepted: March 3, 2021
  3. Accepted Manuscript published: March 4, 2021 (version 1)
  4. Version of Record published: March 18, 2021 (version 2)

Copyright

© 2021, Gonzalez-Calvo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,384
    Page views
  • 285
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Inés Gonzalez-Calvo
  2. Keerthana Iyer
  3. Mélanie Carquin
  4. Anouar Khayachi
  5. Fernando A Giuliani
  6. Séverine M Sigoillot
  7. Jean Vincent
  8. Martial Séveno
  9. Maxime Veleanu
  10. Sylvana Tahraoui
  11. Mélanie Albert
  12. Oana Vigy
  13. Célia Bosso-Lefèvre
  14. Yann Nadjar
  15. Andréa Dumoulin
  16. Antoine Triller
  17. JeanLouis Bessereau
  18. Laure Rondi-Reig
  19. Philippe Isope
  20. Fekrije Selimi
(2021)
Sushi domain-containing protein 4 controls synaptic plasticity and motor learning
eLife 10:e65712.
https://doi.org/10.7554/eLife.65712

Share this article

https://doi.org/10.7554/eLife.65712

Further reading

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.