Sushi domain-containing protein 4 controls synaptic plasticity and motor learning

Abstract

Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Inés Gonzalez-Calvo

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Keerthana Iyer

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Mélanie Carquin

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Anouar Khayachi

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Fernando A Giuliani

    Institut de Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Séverine M Sigoillot

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Jean Vincent

    Institut Biology Paris Seine, Sorbonne University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Martial Séveno

    BioCampus Montpellier, CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Maxime Veleanu

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Sylvana Tahraoui

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Mélanie Albert

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Oana Vigy

    BioCampus Montpellier, CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Célia Bosso-Lefèvre

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Yann Nadjar

    IBENS, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Andréa Dumoulin

    IBENS - Biologie, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Antoine Triller

    IBENS - Biologie, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  17. JeanLouis Bessereau

    Institut NeuroMyoGene, University of Lyon - INSERM - CNRS, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3088-7621
  18. Laure Rondi-Reig

    Institut de Biologie Paris Seine (IBPS) - Neuroscience, Université Pierre et Marie Curie (UPMC), Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1006-0501
  19. Philippe Isope

    Institut de Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0630-5935
  20. Fekrije Selimi

    CIRB, Collège de France, Paris, France
    For correspondence
    fekrije.selimi@college-de-france.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7704-5897

Funding

ATIP-AVENIR (RSE11005JSA)

  • Fekrije Selimi

Labex MEMOLIFE (ANR-10-LABX-54 MEMO LIFE)

  • Keerthana Iyer

Ecole des Neurosciences de Paris

  • Keerthana Iyer

Labex BIOPSY (ANR-11-IDEX-0004-02)

  • Laure Rondi-Reig

Idex PSL (ANR-10-IDEX-0001-02 PSL*)

  • Fekrije Selimi

Agence Nationale de la Recherche (ANR 9139SAMA90010901)

  • Fekrije Selimi

Agence Nationale de la Recherche (ANR 9139SAMA90010901)

  • Philippe Isope

Agence Nationale de la Recherche (ANR-15-CE37-0001-01 CeMod)

  • Fekrije Selimi

Agence Nationale de la Recherche (ANR-15-CE37-0001-01 CeMod)

  • Philippe Isope

Fondation pour la Recherche Médicale (DEQ20150331748)

  • Fekrije Selimi

Fondation pour la Recherche Médicale (DEQ20140329514)

  • Philippe Isope

H2020 European Research Council (SynID 724601)

  • Fekrije Selimi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Megan R Carey, Champalimaud Foundation, Portugal

Ethics

Animal experimentation: All animal protocols were approved by the Comité Regional d'Ethique en Experimentation Animale (no. 00057.01) and animals were housed in authorized facilities of the CIRB (# C75 05 12).

Version history

  1. Received: December 13, 2020
  2. Accepted: March 3, 2021
  3. Accepted Manuscript published: March 4, 2021 (version 1)
  4. Version of Record published: March 18, 2021 (version 2)

Copyright

© 2021, Gonzalez-Calvo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,368
    Page views
  • 282
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Inés Gonzalez-Calvo
  2. Keerthana Iyer
  3. Mélanie Carquin
  4. Anouar Khayachi
  5. Fernando A Giuliani
  6. Séverine M Sigoillot
  7. Jean Vincent
  8. Martial Séveno
  9. Maxime Veleanu
  10. Sylvana Tahraoui
  11. Mélanie Albert
  12. Oana Vigy
  13. Célia Bosso-Lefèvre
  14. Yann Nadjar
  15. Andréa Dumoulin
  16. Antoine Triller
  17. JeanLouis Bessereau
  18. Laure Rondi-Reig
  19. Philippe Isope
  20. Fekrije Selimi
(2021)
Sushi domain-containing protein 4 controls synaptic plasticity and motor learning
eLife 10:e65712.
https://doi.org/10.7554/eLife.65712

Share this article

https://doi.org/10.7554/eLife.65712

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Cell Biology
    2. Neuroscience
    Zhenyong Wu, Grant F Kusick ... Shigeki Watanabe
    Research Article

    Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.