Sushi domain-containing protein 4 controls synaptic plasticity and motor learning

Abstract

Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Inés Gonzalez-Calvo

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Keerthana Iyer

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Mélanie Carquin

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Anouar Khayachi

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Fernando A Giuliani

    Institut de Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Séverine M Sigoillot

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Jean Vincent

    Institut Biology Paris Seine, Sorbonne University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Martial Séveno

    BioCampus Montpellier, CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Maxime Veleanu

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Sylvana Tahraoui

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Mélanie Albert

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Oana Vigy

    BioCampus Montpellier, CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Célia Bosso-Lefèvre

    CIRB, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Yann Nadjar

    IBENS, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Andréa Dumoulin

    IBENS - Biologie, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Antoine Triller

    IBENS - Biologie, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  17. JeanLouis Bessereau

    Institut NeuroMyoGene, University of Lyon - INSERM - CNRS, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3088-7621
  18. Laure Rondi-Reig

    Institut de Biologie Paris Seine (IBPS) - Neuroscience, Université Pierre et Marie Curie (UPMC), Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1006-0501
  19. Philippe Isope

    Institut de Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0630-5935
  20. Fekrije Selimi

    CIRB, Collège de France, Paris, France
    For correspondence
    fekrije.selimi@college-de-france.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7704-5897

Funding

ATIP-AVENIR (RSE11005JSA)

  • Fekrije Selimi

Labex MEMOLIFE (ANR-10-LABX-54 MEMO LIFE)

  • Keerthana Iyer

Ecole des Neurosciences de Paris

  • Keerthana Iyer

Labex BIOPSY (ANR-11-IDEX-0004-02)

  • Laure Rondi-Reig

Idex PSL (ANR-10-IDEX-0001-02 PSL*)

  • Fekrije Selimi

Agence Nationale de la Recherche (ANR 9139SAMA90010901)

  • Fekrije Selimi

Agence Nationale de la Recherche (ANR 9139SAMA90010901)

  • Philippe Isope

Agence Nationale de la Recherche (ANR-15-CE37-0001-01 CeMod)

  • Fekrije Selimi

Agence Nationale de la Recherche (ANR-15-CE37-0001-01 CeMod)

  • Philippe Isope

Fondation pour la Recherche Médicale (DEQ20150331748)

  • Fekrije Selimi

Fondation pour la Recherche Médicale (DEQ20140329514)

  • Philippe Isope

H2020 European Research Council (SynID 724601)

  • Fekrije Selimi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal protocols were approved by the Comité Regional d'Ethique en Experimentation Animale (no. 00057.01) and animals were housed in authorized facilities of the CIRB (# C75 05 12).

Reviewing Editor

  1. Megan R Carey, Champalimaud Foundation, Portugal

Version history

  1. Received: December 13, 2020
  2. Accepted: March 3, 2021
  3. Accepted Manuscript published: March 4, 2021 (version 1)
  4. Version of Record published: March 18, 2021 (version 2)

Copyright

© 2021, Gonzalez-Calvo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,258
    Page views
  • 263
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Inés Gonzalez-Calvo
  2. Keerthana Iyer
  3. Mélanie Carquin
  4. Anouar Khayachi
  5. Fernando A Giuliani
  6. Séverine M Sigoillot
  7. Jean Vincent
  8. Martial Séveno
  9. Maxime Veleanu
  10. Sylvana Tahraoui
  11. Mélanie Albert
  12. Oana Vigy
  13. Célia Bosso-Lefèvre
  14. Yann Nadjar
  15. Andréa Dumoulin
  16. Antoine Triller
  17. JeanLouis Bessereau
  18. Laure Rondi-Reig
  19. Philippe Isope
  20. Fekrije Selimi
(2021)
Sushi domain-containing protein 4 controls synaptic plasticity and motor learning
eLife 10:e65712.
https://doi.org/10.7554/eLife.65712

Further reading

    1. Neuroscience
    Ann-Kathrin Joechner, Michael A Hahn ... Markus Werkle-Bergner
    Research Article

    The synchronization of canonical fast sleep spindle activity (12.5–16 Hz, adult-like) precisely during the slow oscillation (0.5–1 Hz) up peak is considered an essential feature of adult non-rapid eye movement sleep. However, there is little knowledge on how this well-known coalescence between slow oscillations and sleep spindles develops. Leveraging individualized detection of single events, we first provide a detailed cross-sectional characterization of age-specific patterns of slow and fast sleep spindles, slow oscillations, and their coupling in children and adolescents aged 5–6, 8–11, and 14–18 years, and an adult sample of 20- to 26-year-olds. Critically, based on this, we then investigated how spindle and slow oscillation maturity substantiate age-related differences in their precise orchestration. While the predominant type of fast spindles was development-specific in that it was still nested in a frequency range below the canonical fast spindle range for the majority of children, the well-known slow oscillation-spindle coupling pattern was evident for sleep spindles in the adult-like canonical fast spindle range in all four age groups—but notably less precise in children. To corroborate these findings, we linked personalized measures of fast spindle maturity, which indicate the similarity between the prevailing development-specific and adult-like canonical fast spindles, and slow oscillation maturity, which reflects the extent to which slow oscillations show frontal dominance, with individual slow oscillation-spindle coupling patterns. Importantly, we found that fast spindle maturity was uniquely associated with enhanced slow oscillation-spindle coupling strength and temporal precision across the four age groups. Taken together, our results suggest that the increasing ability to generate adult-like canonical fast sleep spindles actuates precise slow oscillation-spindle coupling patterns from childhood through adolescence and into young adulthood.

    1. Genetics and Genomics
    2. Neuroscience
    Ernesto Ciabatti, Ana González-Rueda ... Marco Tripodi
    Tools and Resources Updated

    Transsynaptic viral vectors provide means to gain genetic access to neurons based on synaptic connectivity and are essential tools for the dissection of neural circuit function. Among them, the retrograde monosynaptic ΔG-Rabies has been widely used in neuroscience research. A recently developed engineered version of the ΔG-Rabies, the non-toxic self-inactivating (SiR) virus, allows the long term genetic manipulation of neural circuits. However, the high mutational rate of the rabies virus poses a risk that mutations targeting the key genetic regulatory element in the SiR genome could emerge and revert it to a canonical ΔG-Rabies. Such revertant mutations have recently been identified in a SiR batch. To address the origin, incidence and relevance of these mutations, we investigated the genomic stability of SiR in vitro and in vivo. We found that “revertant” mutations are rare and accumulate only when SiR is extensively amplified in vitro, particularly in suboptimal production cell lines that have insufficient levels of TEV protease activity. Moreover, we confirmed that SiR-CRE, unlike canonical ΔG-Rab-CRE or revertant-SiR-CRE, is non-toxic and that revertant mutations do not emerge in vivo during long-term experiments.