Visualizing anatomically registered data with Brainrender

  1. Federico Claudi  Is a corresponding author
  2. Adam L Tyson
  3. Luigi Petrucco
  4. Troy W Margrie
  5. Ruben Portugues
  6. Tiago Branco  Is a corresponding author
  1. UCL, United Kingdom
  2. Technical University of Munich, Germany

Abstract

Three-dimensional (3D) digital brain atlases and high-throughput brain wide imaging techniques generate large multidimensional datasets that can be registered to a common reference frame. Generating insights from such datasets depends critically on visualization and interactive data exploration, but this a challenging task. Currently available software is dedicated to single atlases, model species or data types, and generating 3D renderings that merge anatomically registered data from diverse sources requires extensive development and programming skills. Here, we present brainrender: an open-source Python package for interactive visualization of multidimensional datasets registered to brain atlases. Brainrender facilitates the creation of complex renderings with different data types in the same visualization and enables seamless use of different atlas sources. High-quality visualizations can be used interactively and exported as high-resolution figures and animated videos. By facilitating the visualization of anatomically registered data, brainrender should accelerate the analysis, interpretation, and dissemination of brain-wide multidimensional data.

Data availability

All code has been deposited on GitHub and is freely accessible.

The following previously published data sets were used

Article and author information

Author details

  1. Federico Claudi

    Sainsbury Wellcome Centre, UCL, London, United Kingdom
    For correspondence
    federico.claudi.17@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam L Tyson

    Sainsbury Wellcome Centre, UCL, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3225-1130
  3. Luigi Petrucco

    Institute of Neuroscience, Technical University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Troy W Margrie

    Sainsbury Wellcome Centre, UCL, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5526-4578
  5. Ruben Portugues

    Institute of Neuroscience, Technical University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1495-9314
  6. Tiago Branco

    Sainsbury Wellcome Centre, UCL, London, United Kingdom
    For correspondence
    t.branco@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5087-3465

Funding

Gatsby Charitable Foundation (GAT3361)

  • Troy W Margrie
  • Tiago Branco

Wellcome (214333/Z/18/Z)

  • Troy W Margrie

Wellcome (214352/Z/18/Z)

  • Tiago Branco

Wellcome (090843/F/09/Z)

  • Troy W Margrie
  • Tiago Branco

Deutsche Forschungsgemeinschaft (390857198)

  • Ruben Portugues

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Claudi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,514
    views
  • 882
    downloads
  • 98
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Federico Claudi
  2. Adam L Tyson
  3. Luigi Petrucco
  4. Troy W Margrie
  5. Ruben Portugues
  6. Tiago Branco
(2021)
Visualizing anatomically registered data with Brainrender
eLife 10:e65751.
https://doi.org/10.7554/eLife.65751

Share this article

https://doi.org/10.7554/eLife.65751

Further reading

    1. Neuroscience
    Célian Bimbard, Flóra Takács ... Philip Coen
    Tools and Resources

    Electrophysiology has proven invaluable to record neural activity, and the development of Neuropixels probes dramatically increased the number of recorded neurons. These probes are often implanted acutely, but acute recordings cannot be performed in freely moving animals and the recorded neurons cannot be tracked across days. To study key behaviors such as navigation, learning, and memory formation, the probes must be implanted chronically. An ideal chronic implant should (1) allow stable recordings of neurons for weeks; (2) allow reuse of the probes after explantation; (3) be light enough for use in mice. Here, we present the ‘Apollo Implant’, an open-source and editable device that meets these criteria and accommodates up to two Neuropixels 1.0 or 2.0 probes. The implant comprises a ‘payload’ module which is attached to the probe and is recoverable, and a ‘docking’ module which is cemented to the skull. The design is adjustable, making it easy to change the distance between probes, the angle of insertion, and the depth of insertion. We tested the implant across eight labs in head-fixed mice, freely moving mice, and freely moving rats. The number of neurons recorded across days was stable, even after repeated implantations of the same probe. The Apollo implant provides an inexpensive, lightweight, and flexible solution for reusable chronic Neuropixels recordings.

    1. Neuroscience
    Ana Fló, Lucas Benjamin ... Ghislaine Dehaene-Lambertz
    Research Article

    Interest in statistical learning in developmental studies stems from the observation that 8-month-olds were able to extract words from a monotone speech stream solely using the transition probabilities (TP) between syllables (Saffran et al., 1996). A simple mechanism was thus part of the human infant’s toolbox for discovering regularities in language. Since this seminal study, observations on statistical learning capabilities have multiplied across domains and species, challenging the hypothesis of a dedicated mechanism for language acquisition. Here, we leverage the two dimensions conveyed by speech –speaker identity and phonemes– to examine (1) whether neonates can compute TPs on one dimension despite irrelevant variation on the other and (2) whether the linguistic dimension enjoys an advantage over the voice dimension. In two experiments, we exposed neonates to artificial speech streams constructed by concatenating syllables while recording EEG. The sequence had a statistical structure based either on the phonetic content, while the voices varied randomly (Experiment 1) or on voices with random phonetic content (Experiment 2). After familiarisation, neonates heard isolated duplets adhering, or not, to the structure they were familiarised with. In both experiments, we observed neural entrainment at the frequency of the regularity and distinct Event-Related Potentials (ERP) to correct and incorrect duplets, highlighting the universality of statistical learning mechanisms and suggesting it operates on virtually any dimension the input is factorised. However, only linguistic duplets elicited a specific ERP component, potentially an N400 precursor, suggesting a lexical stage triggered by phonetic regularities already at birth. These results show that, from birth, multiple input regularities can be processed in parallel and feed different higher-order networks.