Specialized coding patterns among dorsomedial prefrontal neuronal ensembles predict conditioned reward seeking

Abstract

Non-overlapping cell populations within dorsomedial prefrontal cortex (dmPFC), defined by gene expression or projection target, control dissociable aspects of reward seeking through unique activity patterns. However, even within these defined cell populations considerable cell-to-cell variability is found, suggesting that greater resolution is needed to understand information processing in dmPFC. Here we use two-photon calcium imaging in awake, behaving mice to monitor the activity of dmPFC excitatory neurons throughout Pavlovian reward conditioning. We characterize five unique neuronal ensembles that each encode specialized information related to a sucrose reward, reward-predictive cues, and behavioral responses to those cues. The ensembles differentially emerge across daily training sessions - and stabilize after learning - in a manner that improves the predictive validity of dmPFC activity dynamics for deciphering variables related to behavioral conditioning. Our results characterize the complex dmPFC neuronal ensemble dynamics that stably predict reward availability and initiation of conditioned reward seeking following cue-reward learning.

Data availability

All data generated for this study are available on Dryad Digital Repository, accessible here: https://doi.org/10.5061/dryad.xksn02vg8. We are in the process of uploading raw videos for these data to the Image Data Resource (https://idr.openmicroscopy.org/), as there is a 3 week lead time to get the data uploaded and special considerations are required for datasets of >1TB. Code will be uploaded to GitHub upon publication. All data, code, and raw imaging files will be uploaded to these open-source repositories prior to publication.

The following data sets were generated

Article and author information

Author details

  1. Roger I Grant

    Neuroscience, Medical University of South Carolina, Charleston, SC, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elizabeth M Doncheck

    Neuroscience, Medical University of South Carolina, Charleston, SC, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kelsey M Vollmer

    Neuroscience, Medical University of South Carolina, Charleston, SC, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kion T Winston

    Neuroscience, Medical University of South Carolina, Charleston, SC, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Elizaveta V Romanova

    Neuroscience, Medical University of South Carolina, Charleston, SC, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Preston N Siegler

    Neuroscience, Medical University of South Carolina, Charleston, SC, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Heather Holman

    Neuroscience, Medical University of South Carolina, Charleston, SC, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Christopher W Bowen

    Neuroscience, Medical University of South Carolina, Charleston, SC, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. James M Otis

    Neuroscience, Medical University of South Carolina, Charleston, SC, United States
    For correspondence
    otis@musc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0953-9283

Funding

National Institute of Drug Abuse (R01-DA051650)

  • James M Otis

MUSC Cocaine and Opioid Center on Addiction Pilot Award (P50-DA046374)

  • Roger I Grant

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mario Penzo, National Institute of Mental Health, United States

Ethics

Animal experimentation: Experiments were performed in the dark phase and in accordance with the NIH Guide for the Care and Use of Laboratory Animals with approval from the Institutional Animal Care and Use Committee at the Medical University of South Carolina (Approval ID: IACUC-2018-00363; Renewed November 30, 2020).

Version history

  1. Received: December 15, 2020
  2. Accepted: June 22, 2021
  3. Accepted Manuscript published: June 29, 2021 (version 1)
  4. Version of Record published: July 13, 2021 (version 2)

Copyright

© 2021, Grant et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,422
    views
  • 332
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roger I Grant
  2. Elizabeth M Doncheck
  3. Kelsey M Vollmer
  4. Kion T Winston
  5. Elizaveta V Romanova
  6. Preston N Siegler
  7. Heather Holman
  8. Christopher W Bowen
  9. James M Otis
(2021)
Specialized coding patterns among dorsomedial prefrontal neuronal ensembles predict conditioned reward seeking
eLife 10:e65764.
https://doi.org/10.7554/eLife.65764

Share this article

https://doi.org/10.7554/eLife.65764

Further reading

    1. Neuroscience
    Max Schulz, Malte Wöstmann
    Insight

    Asymmetries in the size of structures deep below the cortex explain how alpha oscillations in the brain respond to shifts in attention.

    1. Neuroscience
    Tara Ghafari, Cecilia Mazzetti ... Ole Jensen
    Research Article

    Evidence suggests that subcortical structures play a role in high-level cognitive functions such as the allocation of spatial attention. While there is abundant evidence in humans for posterior alpha band oscillations being modulated by spatial attention, little is known about how subcortical regions contribute to these oscillatory modulations, particularly under varying conditions of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the role of subcortical structures in controlling the allocation of attentional resources by employing a cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemispheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemispheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, and thalamus predicted attention-related modulations of posterior alpha oscillations. When the perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry of the thalamus predicted alpha band modulation when neither component of the task was perceptually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha oscillations with spatial attention, our finding might also have clinical applications. We provide a framework that could be followed for detecting how structural changes in subcortical regions that are associated with neurological disorders can be reflected in the modulation of oscillatory brain activity.