Abstract

The hippocampal dentate gyrus is an important relay conveying sensory information from the entorhinal cortex to the hippocampus proper. During exploration, the dentate gyrus has been proposed to act as a pattern separator. However, the dentate gyrus also shows structured activity during immobility and sleep. The properties of these activity patterns at cellular resolution, and their role in hippocampal-dependent memory processes have remained unclear. Using dual-color in-vivo two-photon Ca2+ imaging, we show that in immobile mice dentate granule cells generate sparse, synchronized activity patterns associated with entorhinal cortex activation. These population events are structured and modified by changes in the environment; and they incorporate place- and speed cells. Importantly, they are more similar than expected by chance to population patterns evoked during self-motion. Using optogenetic inhibition, we show that granule cell activity is not only required during exploration, but also during immobility in order to form dentate gyrus-dependent spatial memories.

Data availability

Binarized imaging traces of all cells from all experiment sessions are available on Dryad. https://doi.org/10.5061/dryad.mkkwh70z6.

The following data sets were generated

Article and author information

Author details

  1. Martin Pofahl

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9473-6195
  2. Negar Nikbakht

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. André N Haubrich

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7895-6203
  4. Theresa M Nguyen

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicola Masala

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabian J Distler

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Oliver Braganza

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8508-1070
  8. Jakob H Macke

    Excellence Cluster Machine Learning, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5154-8912
  9. Laura A Ewell

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Kurtulus Golcuk

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Heinz Beck

    IEECR, University of Bonn Medical Center, Bonn, Germany
    For correspondence
    heinz.beck@ukbonn.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8961-998X

Funding

Deutsche Forschungsgemeinschaft (SFB 1089,Project C04)

  • Heinz Beck

Deutsche Forschungsgemeinschaft (EXC 2064/1 PN 390727645)

  • Jakob H Macke
  • Heinz Beck

Alexander von Humboldt-Stiftung (PSI)

  • Kurtulus Golcuk

Volkswagen Foundation

  • Oliver Braganza
  • Laura A Ewell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted in accordance with European (2010/63/EU) and federal law (TierSchG, TierSchVersV) on animal care and use and approved by the county of North-Rhine Westphalia (LANUV AZ 84-02.04.2015.A524, AZ 81-02.04.2019.A216).

Copyright

© 2021, Pofahl et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,187
    views
  • 503
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin Pofahl
  2. Negar Nikbakht
  3. André N Haubrich
  4. Theresa M Nguyen
  5. Nicola Masala
  6. Fabian J Distler
  7. Oliver Braganza
  8. Jakob H Macke
  9. Laura A Ewell
  10. Kurtulus Golcuk
  11. Heinz Beck
(2021)
Synchronous activity patterns in the dentate gyrus during immobility
eLife 10:e65786.
https://doi.org/10.7554/eLife.65786

Share this article

https://doi.org/10.7554/eLife.65786

Further reading

    1. Neuroscience
    Bhanu Shrestha, Jiun Sang ... Youngseok Lee
    Research Article

    Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.

    1. Neuroscience
    Rossella Conti, Céline Auger
    Research Article

    Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different. We tested the hypothesis that AA and PF synapses encode different information, and that the association of these distinct inputs to Purkinje cells might be relevant to the circuit and trigger plasticity, similar to the coincident activation of PF and climbing fibre inputs. Here, by recording synaptic currents in Purkinje cells from either proximal or distal granule cells (mostly AA and PF synapses, respectively), we describe a new form of associative plasticity between these two distinct granule cell inputs. We show for the first time that synchronous AA and PF repetitive train stimulation, with inhibition intact, triggers long-term potentiation (LTP) at AA synapses specifically. Furthermore, the timing of the presentation of the two inputs controls the outcome of plasticity and induction requires NMDAR and mGluR1 activation. The long length of the PFs allows us to preferentially activate the two inputs independently, and despite a lack of morphological reconstruction of the connections, these observations reinforce the suggestion that AA and PF synapses have different coding capabilities and plasticity that is associative, enabling effective association of information transmitted via granule cells.