Cortico-autonomic local arousals and heightened somatosensory arousability during NREM sleep of mice in neuropathic pain

  1. Romain Cardis
  2. Sandro Lecci
  3. Laura MJ Fernandez
  4. Alejandro Osorio-Forero
  5. Paul Chu Sin Chung
  6. Stephany Fulda
  7. Isabelle Decosterd
  8. Anita Lüthi  Is a corresponding author
  1. University of Lausanne, Switzerland
  2. Pain Center, Lausanne University Hospital (CHUV), Switzerland
  3. Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital of Lugano, Switzerland

Abstract

Frequent nightly arousals typical for sleep disorders cause daytime fatigue and present health risks. As such arousals are often short, partial, or occur locally within the brain, reliable characterization in rodent models of sleep disorders and in human patients is challenging. We found that the EEG spectral composition of non-rapid-eye-movement sleep (NREMS) in healthy mice shows an infraslow (~50 s) interval over which microarousals appear preferentially. NREMS could hence be vulnerable to abnormal arousals on this time scale. Chronic pain is well-known to disrupt sleep. In the spared-nerve-injury (SNI) mouse model of chronic neuropathic pain, we found more numerous local cortical arousals accompanied by heart rate increases in hindlimb primary somatosensory, but not in prelimbic, cortices, although sleep macroarchitecture appeared unaltered. Closed-loop mechanovibrational stimulation further revealed higher sensory arousability. Chronic pain thus preserved conventional sleep measures but resulted in elevated spontaneous and evoked arousability. We develop a novel moment-to-moment probing of NREMS vulnerability and propose that chronic pain-induced sleep complaints arise from perturbed arousability.

Data availability

All processed data generated or analyzed during this study are included in the manuscript and supporting files. Source data files are provided for all figures. Matlab codes for major analyses are provided.

Article and author information

Author details

  1. Romain Cardis

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Sandro Lecci

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Laura MJ Fernandez

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7942-3369
  4. Alejandro Osorio-Forero

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4341-4206
  5. Paul Chu Sin Chung

    Pain Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephany Fulda

    Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital of Lugano, Lugano, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Isabelle Decosterd

    Pain Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Anita Lüthi

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    For correspondence
    anita.luthi@unil.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4954-4143

Funding

Swiss National Science Foundation (310030_184759)

  • Anita Lüthi

Swiss National Science Foundation (310030_179169)

  • Isabelle Decosterd

Swiss National Science Foundation (320030-179194)

  • Stephany Fulda

Etat de Vaud (N/A)

  • Anita Lüthi

Etat de Vaud (N/A)

  • Isabelle Decosterd

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures complied with the Swiss National Institutional Guidelines on Animal Experimentation and were approved by the Swiss Cantonal Veterinary Office Committee for Animal Experimentation.

Copyright

© 2021, Lüthi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,661
    views
  • 292
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Romain Cardis
  2. Sandro Lecci
  3. Laura MJ Fernandez
  4. Alejandro Osorio-Forero
  5. Paul Chu Sin Chung
  6. Stephany Fulda
  7. Isabelle Decosterd
  8. Anita Lüthi
(2021)
Cortico-autonomic local arousals and heightened somatosensory arousability during NREM sleep of mice in neuropathic pain
eLife 10:e65835.
https://doi.org/10.7554/eLife.65835

Share this article

https://doi.org/10.7554/eLife.65835

Further reading

    1. Cell Biology
    2. Neuroscience
    Luting Yang, Chunqing Hu ... Yaping Yan
    Research Article

    Reactive astrocytes play critical roles in the occurrence of various neurological diseases such as multiple sclerosis. Activation of astrocytes is often accompanied by a glycolysis-dominant metabolic switch. However, the role and molecular mechanism of metabolic reprogramming in activation of astrocytes have not been clarified. Here, we found that PKM2, a rate-limiting enzyme of glycolysis, displayed nuclear translocation in astrocytes of EAE (experimental autoimmune encephalomyelitis) mice, an animal model of multiple sclerosis. Prevention of PKM2 nuclear import by DASA-58 significantly reduced the activation of mice primary astrocytes, which was observed by decreased proliferation, glycolysis and secretion of inflammatory cytokines. Most importantly, we identified the ubiquitination-mediated regulation of PKM2 nuclear import by ubiquitin ligase TRIM21. TRIM21 interacted with PKM2, promoted its nuclear translocation and stimulated its nuclear activity to phosphorylate STAT3, NF-κB and interact with c-myc. Further single-cell RNA sequencing and immunofluorescence staining demonstrated that TRIM21 expression was upregulated in astrocytes of EAE. TRIM21 overexpressing in mice primary astrocytes enhanced PKM2-dependent glycolysis and proliferation, which could be reversed by DASA-58. Moreover, intracerebroventricular injection of a lentiviral vector to knockdown TRIM21 in astrocytes or intraperitoneal injection of TEPP-46, which inhibit the nuclear translocation of PKM2, effectively decreased disease severity, CNS inflammation and demyelination in EAE. Collectively, our study provides novel insights into the pathological function of nuclear glycolytic enzyme PKM2 and ubiquitination-mediated regulatory mechanism that are involved in astrocyte activation. Targeting this axis may be a potential therapeutic strategy for the treatment of astrocyte-involved neurological disease.

    1. Neuroscience
    Felix Michaud, Ruggiero Francavilla ... Lisa Topolnik
    Research Article

    Alzheimer’s disease (AD) leads to progressive memory decline, and alterations in hippocampal function are among the earliest pathological features observed in human and animal studies. GABAergic interneurons (INs) within the hippocampus coordinate network activity, among which type 3 interneuron-specific (I-S3) cells expressing vasoactive intestinal polypeptide and calretinin play a crucial role. These cells provide primarily disinhibition to principal excitatory cells (PCs) in the hippocampal CA1 region, regulating incoming inputs and memory formation. However, it remains unclear whether AD pathology induces changes in the activity of I-S3 cells, impacting the hippocampal network motifs. Here, using young adult 3xTg-AD mice, we found that while the density and morphology of I-S3 cells remain unaffected, there were significant changes in their firing output. Specifically, I-S3 cells displayed elongated action potentials and decreased firing rates, which was associated with a reduced inhibition of CA1 INs and their higher recruitment during spatial decision-making and object exploration tasks. Furthermore, the activation of CA1 PCs was also impacted, signifying early disruptions in CA1 network functionality. These findings suggest that altered firing patterns of I-S3 cells might initiate early-stage dysfunction in hippocampal CA1 circuits, potentially influencing the progression of AD pathology.