Metal microdrive and head cap system for silicon probe recovery in freely moving rodent

  1. Mihály Vöröslakos
  2. Peter C Petersen
  3. Balázs Vöröslakos
  4. György Buzsáki  Is a corresponding author
  1. New York University, United States
  2. University of Copenhagen, Denmark
  3. Budapest University of Technology and Economics, Hungary

Abstract

High-yield electrophysiological extracellular recording in freely moving rodents provides a unique window into the temporal dynamics of neural circuits. Recording from unrestrained animals is critical to investigate brain activity during natural behaviors. The use and implantation of high-channel-count silicon probes represent the largest cost and experimental complexity associated with such recordings making a recoverable and reusable system desirable. To address this, we have designed and tested a novel 3D printed head-gear system for freely moving mice and rats. The system consists of a recoverable microdrive printed in stainless steel and a plastic head cap system, allowing researchers to reuse the silicon probes with ease, decreasing the effective cost, and the experimental effort and complexity. The cap designs are modular and provide structural protection and electrical shielding to the implanted hardware and electronics. We provide detailed procedural instructions allowing researchers to adapt and flexibly modify the head-gear system.

Data availability

All documentations for parts and device fabrication are included in the manuscript and supporting files, including video recordings. The same information is made public via GitHub (https://github.com/buzsakilab/3d_print_designs/tree/master/Microdrives/Metal_recoverable). Data from example electrophysiological recordings are available here (https://buzsakilab.com/wp/projects/entry/65723/).

Article and author information

Author details

  1. Mihály Vöröslakos

    Neuroscience Institute, Langone Medical Center, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Peter C Petersen

    Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Balázs Vöröslakos

    Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. György Buzsáki

    Neuroscience Institute, Langone Medical Center, Department of Neurology, New York University, New York, United States
    For correspondence
    gyorgy.buzsaki@nyulangone.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3100-4800

Funding

National Institutes of Health (U19 NS107616)

  • György Buzsáki

National Institutes of Health (U19 NS104590)

  • György Buzsáki

National Institutes of Health (R01 MH122391)

  • György Buzsáki

Lundbeckfonden

  • Peter C Petersen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the Institutional Animal Care and Use Committee at New York University Medical Center (protocol number: IA15-01466).

Copyright

© 2021, Vöröslakos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,682
    views
  • 608
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mihály Vöröslakos
  2. Peter C Petersen
  3. Balázs Vöröslakos
  4. György Buzsáki
(2021)
Metal microdrive and head cap system for silicon probe recovery in freely moving rodent
eLife 10:e65859.
https://doi.org/10.7554/eLife.65859

Share this article

https://doi.org/10.7554/eLife.65859

Further reading

    1. Developmental Biology
    2. Neuroscience
    Agnik Dasgupta, Caleb C Reagor ... AJ Hudspeth
    Research Article

    In a developing nervous system, axonal arbors often undergo complex rearrangements before neural circuits attain their final innervation topology. In the lateral line sensory system of the zebrafish, developing sensory axons reorganize their terminal arborization patterns to establish precise neural microcircuits around the mechanosensory hair cells. However, a quantitative understanding of the changes in the sensory arbor morphology and the regulators behind the microcircuit assembly remain enigmatic. Here, we report that Semaphorin7A (Sema7A) acts as an important mediator of these processes. Utilizing a semi-automated three-dimensional neurite tracing methodology and computational techniques, we have identified and quantitatively analyzed distinct topological features that shape the network in wild-type and Sema7A loss-of-function mutants. In contrast to those of wild-type animals, the sensory axons in Sema7A mutants display aberrant arborizations with disorganized network topology and diminished contacts to hair cells. Moreover, ectopic expression of a secreted form of Sema7A by non-hair cells induces chemotropic guidance of sensory axons. Our findings propose that Sema7A likely functions both as a juxtracrine and as a secreted cue to pattern neural circuitry during sensory organ development.

    1. Neuroscience
    Eun Joo Kim, Mi-Seon Kong ... Jeansok John Kim
    Research Article

    Pavlovian fear conditioning research suggests that the interaction between the dorsal periaqueductal gray (dPAG) and basolateral amygdala (BLA) acts as a prediction error mechanism in the formation of associative fear memories. However, their roles in responding to naturalistic predatory threats, characterized by less explicit cues and the absence of reiterative trial-and-error learning events, remain unexplored. In this study, we conducted single-unit recordings in rats during an ‘approach food-avoid predator’ task, focusing on the responsiveness of dPAG and BLA neurons to a rapidly approaching robot predator. Optogenetic stimulation of the dPAG triggered fleeing behaviors and increased BLA activity in naive rats. Notably, BLA neurons activated by dPAG stimulation displayed immediate responses to the robot, demonstrating heightened synchronous activity compared to BLA neurons that did not respond to dPAG stimulation. Additionally, the use of anterograde and retrograde tracer injections into the dPAG and BLA, respectively, coupled with c-Fos activation in response to predatory threats, indicates that the midline thalamus may play an intermediary role in innate antipredatory-defensive functioning.