Drosophila uses a tripod gait across all walking speeds, and the geometry of the tripod is important for speed control
Abstract
Changes in walking speed are characterized by changes in both the animal's gait and the mechanics of its interaction with the ground. Here we study these changes in walking Drosophila. We measured the fly's center of mass (CoM) movement with high spatial resolution and the position of its footprints. Flies predominantly employ a modified tripod gait that only changes marginally with speed. The mechanics of a tripod gait can be approximated with a simple model – angular and radial spring-loaded inverted pendulum (ARSLIP) – which is characterized by two springs of an effective leg that become stiffer as the speed increases. Surprisingly, the change in the stiffness of the spring is mediated by the change in tripod shape rather than a change in stiffness of the individual leg. The effect of tripod shape on mechanics can also explain the large variation in kinematics among insects, and ARSLIP can model these variations.
Data availability
Data is available on Dryad under doi:10.5061/dryad.m63xsj41g and Github https://github.com/vbhandawat/FlyTripod_eLife_2021/
-
Data from: Drosophila uses a tripod gait across all walking speeds, and the geometry of the tripod is important for speed controlDryad Digital Repository, 10.5061/dryad.m63xsj41g.
-
FlyTripod_eLife_2021Github, FlyTripod_eLife_2021.
Article and author information
Author details
Funding
National Science Foundation (IOS-1652647)
- Vikas Bhandawat
National Institute on Deafness and Other Communication Disorders (RO1DC015827)
- Vikas Bhandawat
National Institute of Neurological Disorders and Stroke (RO1NS097881)
- Vikas Bhandawat
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Gordon J Berman, Emory University, United States
Publication history
- Received: December 17, 2020
- Accepted: January 22, 2021
- Accepted Manuscript published: February 3, 2021 (version 1)
- Version of Record published: March 4, 2021 (version 2)
Copyright
© 2021, Chun et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,380
- Page views
-
- 215
- Downloads
-
- 5
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Neuroscience
Brains are not engineered solutions to a well-defined problem but arose through selective pressure acting on random variation. It is therefore unclear how well a model chosen by an experimenter can relate neural activity to experimental conditions. Here we developed 'Model identification of neural encoding (MINE)'. MINE is an accessible framework using convolutional neural networks (CNN) to discover and characterize a model that relates aspects of tasks to neural activity. Although flexible, CNNs are difficult to interpret. We use Taylor decomposition approaches to understand the discovered model and how it maps task features to activity. We apply MINE to a published cortical dataset as well as experiments designed to probe thermoregulatory circuits in zebrafish. MINE allowed us to characterize neurons according to their receptive field and computational complexity, features which anatomically segregate in the brain. We also identified a new class of neurons that integrate thermosensory and behavioral information which eluded us previously when using traditional clustering and regression-based approaches.
-
- Developmental Biology
- Neuroscience
Neuronal information conductance often involves the transmission of action potentials. The spreading of action potentials along the axonal process of a neuron is based on three physical parameters: The axial resistance of the axon, the axonal insulation by glial membranes, and the positioning of voltage-gated ion channels. In vertebrates, myelin and channel clustering allow fast saltatory conductance. Here we show that in Drosophila melanogaster voltage-gated sodium and potassium channels, Para and Shal, co-localize and cluster in an area resembling the axon initial segment. The local enrichment of Para but not of Shal localization depends on the presence of peripheral wrapping glial cells. In larvae, relatively low levels of Para channels are needed to allow proper signal transduction and nerves are simply wrapped by glial cells. In adults, the concentration of Para increases and is prominently found at the axon initial segment of motor neurons. Concomitantly, these axon domains are covered by a mesh of glial processes forming a lacunar structure that possibly serves as an ion reservoir. Directly flanking this domain glial processes forming the lacunar area appear to collapse and closely apposed stacks of glial cell processes can be detected, resembling a myelin-like insulation. Thus, Drosophila development may reflect the evolution of myelin which forms in response to increased levels of clustered voltage-gated ion channels.