A confinable home and rescue gene drive for population modification

  1. Nikolay P Kandul
  2. Junru Liu
  3. Jared B Bennett
  4. John M Marshall
  5. Omar S Akbari  Is a corresponding author
  1. University of California, San Diego, United States
  2. University of California, Berkeley, United States

Abstract

Homing based gene drives, engineered using CRISPR/Cas9, have been proposed to spread desirable genes throughout populations. However, invasion of such drives can be hindered by the accumulation of resistant alleles. To limit this obstacle, we engineer a confinable population modification Home-and-Rescue (HomeR) drive in Drosophila targeting an essential gene. In our experiments, resistant alleles that disrupt the target gene function were recessive lethal, and therefore disadvantaged. We demonstrate that HomeR can achieve an increase in frequency in population cage experiments, but that fitness costs due to the Cas9 insertion limit drive efficacy. Finally, we conduct mathematical modeling comparing HomeR to contemporary gene drive architectures for population modification over wide ranges of fitness costs, transmission rates, and release regimens. HomeR could potentially be adapted to other species, as a means for safe, confinable, modification of wild populations.

Data availability

All data are represented fully within the tables and figures. The gRNA#1PolG2, gRNA#2PolG2, HomeRPolG2, HomeR(B)PolG2, exuL-Cas9, Rcd1r-Cas9, and βTub-Cas9 plasmids and corresponding fly lines are deposited at Addgene.org (159671-159677) and the Bloomington Drosophila Stock Center (91375-91378), respectively.

Article and author information

Author details

  1. Nikolay P Kandul

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    Nikolay P Kandul, is a consultant for Agragene..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7347-5558
  2. Junru Liu

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Jared B Bennett

    Department of Biophysics, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4718-257X
  4. John M Marshall

    Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0603-7341
  5. Omar S Akbari

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    For correspondence
    oakbari@ucsd.edu
    Competing interests
    Omar S Akbari, is a founder of Agragene, Inc., has an equity interest, and serves on the company's Scientific Advisory Board..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6853-9884

Funding

Defense Advanced Research Projects Agency (HR0011-17-2-0047)

  • Omar S Akbari

National Institutes of Health (R21RAI149161A)

  • Omar S Akbari

National Institutes of Health (R01AI151004)

  • Omar S Akbari

National Institutes of Health (DP2AI152071)

  • Omar S Akbari

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Claude Desplan, New York University, United States

Version history

  1. Received: December 19, 2020
  2. Accepted: March 4, 2021
  3. Accepted Manuscript published: March 5, 2021 (version 1)
  4. Version of Record published: March 17, 2021 (version 2)

Copyright

© 2021, Kandul et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,049
    Page views
  • 220
    Downloads
  • 30
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nikolay P Kandul
  2. Junru Liu
  3. Jared B Bennett
  4. John M Marshall
  5. Omar S Akbari
(2021)
A confinable home and rescue gene drive for population modification
eLife 10:e65939.
https://doi.org/10.7554/eLife.65939

Share this article

https://doi.org/10.7554/eLife.65939

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Erandi Velazquez-Miranda, Ming He
    Insight

    Endothelial cell subpopulations are characterized by unique gene expression profiles, epigenetic landscapes and functional properties.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Xinjian Ye, Yijing Bai ... Qianming Chen
    Research Article

    Periodontitis drives irreversible destruction of periodontal tissue and is prone to exacerbating inflammatory disorders. Systemic immunomodulatory management continues to be an attractive approach in periodontal care, particularly within the context of ‘predictive, preventive, and personalized’ periodontics. The present study incorporated genetic proxies identified through genome-wide association studies for circulating immune cells and periodontitis into a comprehensive Mendelian randomization (MR) framework. Univariable MR, multivariable MR, subgroup analysis, reverse MR, and Bayesian model averaging (MR-BMA) were utilized to investigate the causal relationships. Furthermore, transcriptome-wide association study and colocalization analysis were deployed to pinpoint the underlying genes. Consequently, the MR study indicated a causal association between circulating neutrophils, natural killer T cells, plasmacytoid dendritic cells, and an elevated risk of periodontitis. MR-BMA analysis revealed that neutrophils were the primary contributors to periodontitis. The high-confidence genes S100A9 and S100A12, located on 1q21.3, could potentially serve as immunomodulatory targets for neutrophil-mediated periodontitis. These findings hold promise for early diagnosis, risk assessment, targeted prevention, and personalized treatment of periodontitis. Considering the marginal association observed in our study, further research is required to comprehend the biological underpinnings and ascertain the clinical relevance thoroughly.