(A) Maximal intensity projection of one-photon confocal images of an immature SC labeled with Alexa 488. Examples of intensity profiles (yellow line) of three dendritic locations from proximal to distal = a, (b and c) superimposed on the image. Dendrite diameter is approximated by the full-width half-maximum (FWHM) of the Gaussian fit of the line profile (broken red line). (B) Top: histogram showing the distribution of immature SC dendrite diameters from 93 dendrites (in blue) and the adult SC distribution (from Abrahamsson et al., 2012; in green), with a Gaussian fit indicating a mode centered at 0.43 ± 0.008 μm. Bottom left: summary box and whisker plot showing dendritic diameters for individual SCs. Superimposed filled circles represent individual dendritic branch measurements. Bottom right: summary box and whisker plot showing dendritic diameters as a function of dendritic branch order in immature SC. Filled circles represent individual dendritic diameters (with p = 0.19 between orders 1 and 2, p = 0.014 between orders 2 and 3, and p = 0.046 between orders 3 and 4). The dotted line indicates the mean dendritic diameter for immature SC. (C) Numerical simulations of somatic quantal excitatory postsynaptic currents (qEPSCs) in a passive immature SC under voltage-clamp (Cm = 0.9 pF/cm2, Rm = 20,000 Ω.cm2, and Ri = 150 ± 50 Ω.cm) with a dendritic diameter set to 0.47 µm. Left: top traces show simulated qEPSCs (sim qEPSC at a Vm = −70 mV) in response to a quantal synaptic conductance (gsyn) injected at the soma (magenta) and at a distance of 45 μm on a dendrite (gray trace). gsyn was set to reproduce the experimental qEPSCs following somatic synapses activation (see Figure 3). Bottom traces (green), the corresponding local voltage transients at the site of synaptic conductance injection. Boundaries of shaded region indicate simulations with a Ri of 100–200 Ωcm. Right: summary plot shows the distance dependence of simulated qEPSC amplitude, rise time, and half-width. Boundaries of the shaded region indicate simulations with a Ri of 100–200 Ω.cm. The dotted line indicates the 50% amplitude reduction. (D) Two-photon laser scanning microscopy (2PLSM) image of a P16 SC (maximal intensity projection) patch loaded with 30μM Alexa 594 and the corresponding 3D reconstruction in NeuronStudio (red: soma, brown: dendrite, blue: axon). (E) Superimposed numerical simulation of qEPSCs in the reconstructed P16 SC (with Cm = 0.9 pF/cm2, Rm = 20,000 Ω.cm2, and Ri = 150 Ω.cm) in response to a quantal conductance (gsyn) at the soma (red dot, magenta trace) or at a distance of 60μm on six different dendritic branches (blue dots, gray traces). gsyn was set to reproduce immature qEPSCs evoked by somatic synapses. (F) Simulated qEPSCs from synapse locations at the soma (red dot, magenta trace) or along a single dendrite (blue dot, gray traces). The summary plot shows the simulated qEPSC amplitudes as a function of synaptic location along the somatodendritic compartment. Boundaries of the shaded region indicate simulations with a Ri of 100–200 Ω.cm. The dotted line indicates the 50% amplitude reduction. (G) Same as in (D) but for a P42 SC. (H) Same as in (F) but with the reconstructed P42 SC and gsyn to reproduce experimental adult somatic qEPSC. See Figure 2—source data 1.