Dynamic dichotomy of accumbal population activity underlies cocaine sensitization

Abstract

Locomotor sensitization (LS) is an early behavioral adaptation to addictive drugs, driven by the increase of dopamine in the Nucleus Accumbens (NAc). However, the effect on accumbal population activity remains elusive. Here we used single cell calcium imaging in mice to record the activity of dopamine-1-receptor (D1R) and dopamine-2-receptor (D2R) expressing spiny projection neurons (SPNs) during cocaine LS. Acute exposure to cocaine elevated D1R SPN activity and reduced D2R SPN activity, albeit with high variability between neurons. During LS, the number of D1R and D2R neurons responding in opposite directions increased. Moreover, preventing LS by inhibition of the ERK signaling pathway decreased the number of cocaine responsive D1R SPNs, but had little effect on D2R SPNs. These results indicate that accumbal population dichotomy is dynamic and contains a subgroup of D1R SPNs that eventually drives LS. Insights into the drug-related activity dynamics provides a foundation for understanding the circuit-level addiction pathogenesis.

Data availability

Data and code have been made available via Zenodo: DOI: 10.5281/zenodo.5507009

The following data sets were generated

Article and author information

Author details

  1. Ruud van Zessen

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5634-6922
  2. Li Yue

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucile Marion-Poll

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas Hulo

    Service for Biomathematical and Biostatistical Analyses, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2640-636X
  5. Jérôme Flakowski

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6457-3022
  6. Christian Lüscher

    Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
    For correspondence
    Christian.Luscher@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7917-4596

Funding

Swiss National Science Foundation (310030_189188)

  • Christian Lüscher

European Commission (F_Addict)

  • Christian Lüscher

Swiss National Science Foundation (CRSII5_186266)

  • Christian Lüscher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Aryn H Gittis, Carnegie Mellon University, United States

Ethics

Animal experimentation: All experiments were reviewed and approved by the Institutional Animal Care and Use Committee of the University of Geneva (GE64-20 and GE71-20)

Version history

  1. Received: December 23, 2020
  2. Preprint posted: January 30, 2021 (view preprint)
  3. Accepted: September 28, 2021
  4. Accepted Manuscript published: October 5, 2021 (version 1)
  5. Accepted Manuscript updated: October 6, 2021 (version 2)
  6. Version of Record published: October 18, 2021 (version 3)

Copyright

© 2021, van Zessen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,431
    views
  • 384
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruud van Zessen
  2. Li Yue
  3. Lucile Marion-Poll
  4. Nicolas Hulo
  5. Jérôme Flakowski
  6. Christian Lüscher
(2021)
Dynamic dichotomy of accumbal population activity underlies cocaine sensitization
eLife 10:e66048.
https://doi.org/10.7554/eLife.66048

Share this article

https://doi.org/10.7554/eLife.66048

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article Updated

    Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.